
AD-A258 999 0
AFIT/GCE/ENG/92D-01

DTIC[•ELECTE '

S JAN 11 19930
" ~C

PARALLEL SIMULATION OF
STRUCTURAL VHDL CIRCUITS ON

INTEL HYPERCUBES

THESIS

Thomas A. Breeden
Captain, USAF

AFIT/GCE/ENG/92D-01

/g--.00085

Approved for public release; distribution unlimited

331 4.

AFIT/GCE/ENG/92D-01

PARALLEL SIMULATION OF

STRUCTURAL VHDL CIRCUITS ON

INTEL HYPERCUBES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

DTIC QUALffl 1ThSPECTED 8

Thomas A. Breeden, B.S.E.E

Captain, USAF

XT iS salt"
Dec, 1992 WF tAB 0

Ummlouneed 3
Jugs tI fiat I w,,

Distributiton/

Approved for public release; distribution unlimited Availability Codes

IAvail and/or
.Disto tSpecial

Acknowledgements

I'd like to thank my thesis committee for their enthusiastic support and guidance. Maj Kan-

zaki kept my nose to the schedule, and Maj Christensen was always available when I needed to

iron out an issue or bounce an idea off of a "greater mind." Dr. Hartrum was especially helpful in

every area of this effort. He has an uncanny ability to create a workable model of anything on his

chalkboard. After a session of "chalk-talk," I could always go back to the computer and implement

our design in a straightforward manner. Even more uncanny is Dr. Hartrum's method of treating

you like an equal and making you feel like what you're doing is truly worthwhile-a highly effective

management technique that I hope to take with n,-.

This research could not have been accomplished without a significant amount of technical

support from the following people:

"* Ron Comeau demonstrated that extracting intermediate C code from Intermetrics' VHDL

compiler was an effective method for generating parallel VHDL simulations. He is responsible

for identifying the methods for transforming the C code, the key data structures, and the basic

sequential simulation algorithm. From there, I went my own way; however, my "successes"

could not have been achieved without his initial investigation and design. Also, the VHDL

source code for the adders were taken from Comeau's research.

"* Dave Daniel provided the VHDL source code for the shifter.

"* Maj Kanzaki created the VHDL wallace tree multiplier, which is the largest structural circuit

simulated.

"* Scott VanHorn brought me up to speed on SPECTRUM in less than a week. He was also a

great help in designing that very tricky receive filter.

"* Maj Christensen has begun work on a "VHDL graph tool," which will be used in the future

to generate and test circuit partitioning strategies. I used this tool to generate the uniform

random distributions of behaviors to logical processes for the shifter and multiplier.

"* Rick Norris provided a tool to automatically generate 1p. arcs files, which SPECTRUM

requires. I found generating these files "by hand" to be the greatest source of user error in

running the parallel simulations.

To my best friend and brother, Tim, thanks for keeping me laughing with the e-mail. Good

luck at Carnegie Mellon.

Finally, to Barbara and the boys, I present this modest thesis as evidence that I was indeed

at school all those nights. Thanks for your patience.

Thomas A. Breeden

Iil

Table of Contents

Page

Acknowledgem ents ii

Table of Contents iv

List of Figures ix

List of Tables .. xii

Abstract .. xiii

I. Introduction .. 1

1.1 Background .. 1

1.2 Problem Statement 2

1.3 Research Objectives 2

1.4 Assumptions .. 3

1.5 Scope ... 4

1.6 Limitations ... 4

1.6.1 VHDL Source Code Limitations for VSIM 4

1.6.2 Postprocessor Limitations 5

1.6.3 VSIM limitations 6

1.7 Thesis Overview .. 6

1.8 Summary .. 7

II. Background .. 8

2.1 Overview ... 8

2.2 Traditional Simulation 8

2.3 Distributed Simulation 9

2.3.1 General Performance Model 10

iv

Page

2.3.2 Speed-Up and Efficiency of Distributed Simulations 10

2.3.3 Distributed Simulation Protocols 10

2.4 Overview of SPECTRUM 14

2.5 Other Parallel VHDL Research 16

2.6 Summary .. 18

III. Methodology 19

3.1 Introduction .. 19

3.2 Overview ... IP

3.3 Data Structures .. 21

3.4 Sequential Simulation Cycle 23

3.5 Active List Management 27

3.5.1 Transport Delays 27

3.5.2 Inertial Delays 27

3.6 Transformation of Intermediate C Code 29

3.7 Parallel VHDL Simulation 30

3.7.1 SPECTRUM and VSIM 30

3.7.2 The SPECTRUM/VSIM Filters 31

3.7.3 Modifications to VSIM for Parallel Simulation 33

3.8 Summary. .. 38

IV. Implementation 39

4.1 Introduction .. 39

4.2 Postprocessor Implementation 39

4.2.1 Transformation Steps 43

4.2.2 Lex Descriptions of the Transformation Steps 47

4.3 Interfacing VSIM with SPECTRUM 49

4.3.1 Main SPECTRUM Functions 49

V

Page

4.3.2 Implementation of SPECTRUM Filters for VSIM 52

4.3.3 Termination 53

V. Results 54

5.1 Introduction .. 54

5.2 Program Validation 54

5.3 Circuit Partitioning 57

5.4 Explanation of Charts 58

5.5 Circuit Simulations .. 58

5.5.1 Carry Save Adder 58

5.5.2 Carry Propagate Adder 60

5.5.3 Carry Lookahead Adder 63

5.5.4 Shifter 70

5.5.5 Multiplier 70

5.6 Performance vs. Test Vector Quantity 70

5.7 Multitasking LPs on one Physical Processor 77

5.8 Performance with Output Enabled 80

VI. Conclusions/Recommendations 81

6.1 Research Summary .. 81

6.2 Conclusions 81

6.3 Recommendations for Further Research 82

6.3.1 Parallel Simulation Recommendations 82

6.3.2 Improving the Postprocessor 83

6.3.3 Expanding the VHDL subset 83

6.3.4 Other Recommendations 84

Appendix A. Definitions 86

A.1 Discrete-Event Digital Simulation Definitions 86

A.2 VHDL Definitions ... 86

vi

Page

Appendix B. AFIT Parallel VHDL User's Guide 90

B .1 O verview . 90

B.1.i Introduction 90

B.1.2 Process . 90

B.1.3 Related Files 90

B.2 Implementation 93

B.2.1 Introduction 93

B.2.2 Generating VHDL Source Code 93

B.2.3 Setting up a User Library for Circuit Models 93

B.2.4 Compiling, Model Generating, and Building 94

B.2.5 Extracting and Transforming Intermediate C Code 94

B.2.6 Running VSIM on a Sequential Machine 97

B.2.7 Generating Partitioning Strategies 98

B.2.8 Running VSIM on a Parallel Machine 99

B.3 Example: An Edge-Triggered D Flip-Flop 99

B.3.1 Introduction 99

B.3.2 VHDL Source Code 100

B.3.3 Compiling, Model Generating, Building, and Simulating under In-

termetrics 100

B.3.4 Using the Postprocessor to Generate Intermediate C Code. . . 102

B.3.5 Sequential Simulation with VSIM 103

B.3.6 Extracting Behavior Information using VMAP 108

B.3.7 Generating .arcs and .map Files for Partitioning 110

B.3.8 Parallel Simulation 112

B.3.9 Summary .. 113

vii

Page

Appendix C. Subset of VHDL Source Code for Parallel Simulation 122

C.1 Logic Gates 122

C.2 Structural Connection of Logic Gates 123

C.3 Test Bench and Input Vectors 125

C.4 Configuration Descriptions 127

Appendix D. Design of the Wallace Tree Multiplier 131

Appendix E. Summary of Performance Data 139

Appendix F. New Postprocessor Steps 142

Appendix G. Key Source Code 144

G.1 vspec-init0 .. 144

G.2 startup0 145

G.3 send-signal(). .. 145

G.4 receive.signal(). ... 146

G.5 null-post-fltr0 147

G.6 ahle.to.proceed0 147

G.i safetimeo 148

G.8 sendanulls(... 148

G.9 null-getjfltr0 .. 149

Bibliography 151

Vita 153

viii

List of Figures

Figure Page

1. Response Measurement from a Discrete-Event Simulator (27) 9

2. A Distributed System That Does Not Progress (25:56) 12

3. A Distributed System That Deadlocks (25:56) 12

4. Block Diagram of the SPECTRUM Testbed (31) 15

5. Simulation Session Using Intermetrics' Toolset (10:3-8) 20

6. Parallel Simulation Session 21

7. Basic Structure for Behavior Instances 22

8. Basic Structure for Signal Records 22

9. Behavior List Structure ... 23

10. Active Record Structure ... 23

11. Interrelationship of VHDL Simulation Data Structures (10:3-14) 24

12. The VHDL Simulation Cycle (10:3-15) 25

13. Main Simulation Loop in VSIM 26

14. An AND Gate with a Transport Delay 28

15. An AND Gate with an Inertial Delay 29

1G. VSIM on the SPECTRUM Testbed (One LP Shown) 31

17. Event Structure for Message Passing 32

18. Parallel VHDL Simulation Cycle Shown for One LP 34

19. A 2-LP configuration 34

20. Data Flow for Incoming Event 35

21. Main VSIM Simulation Loop Modified for Parallel Operation 36

22. Structure Identifying LP Ownership of Each Behavior 37

23. Basic structure for Signal Records Modified to Identify LP Ownership 38

24. Example VHDL Model-generate And Build Session for an Edge-triggered D Flip-Flop 41

25. Example Compilation Script Generated During Intermetrics' Build Phase 42

ix

Figure Page

26. Result o(Reading Compilation Script by pbuild 42

27. Relationships of the Postprocessor Files 43

28. Regular Expressions Required to Identify Data i;o be Transformed 47

29. Function Calls and Actions Defined for Each Regular Expression 48

30. Example Postprocessor Report 50

31. Sample Intermetrics Output for Carry Lookahead Adder 55

32. Sample VSIM Output for Carry Lookahead Adder 56

33. Schematic Diagram of the 8-bit Carry Save Adder (10) 59

34. Performance of the Carry Save Adder on the iPSC/2 61

35. Performance of the Carry Save Adder on the iPSC/860 62

36. Schematic Diagram of the 8-bit Carry Propagate Adder (10) 63

37. Performance of the Carry Propagate Adder on the iPSC/2 64

38. Performance of the Carry Propagate Adder on the iPSC/860 65

39. Schematic Diagram of the 8-bit Carry Lookahead Adder (10) 66

40. Four-LP Partition of the Carry Lookahead Adder (Lower Four Bits Shown) 67

41. Eight-LP Partition of the Carry Lookahead Adder (lower Four Bits Shown) 67

42. Performance of the Carry Lookahead Adder on the iPSC/2 68

43. Performance of the Carry Lookahead Adder on the iPSC/860 69

44. Schematic diagram of the 16-bit shifter 71

45. Performance of the 16-bit Shifter on the iPSC/860 72

46. Performance of the Wallace Tree Multiplier on the iPSC/2 73

47. Performance of the Wallace Tree Multiplier on the iPSC/860 74

48. Performance of the Carry Lookahead Adder with 64 Input Vectors Applied (iPSC/2) 75

49. Performance of the Carry Lookahead Adder with 64 Input Vectors Applied (iPSC/860) 76

50. Performance of the Carry Lookahead Adder with all LPs Run on One Node (iPSC/2) 78

51. Performance of the Wallace Tree Multiplier with all LPs Run on One Node (iPSC/2) 79

52. Example of the Relationships Among Behavioral and Structural Circuit Descriptions

in a Mixed-Level Design ... 89

x

Figure Page

53. Overview of Parallel Simulation Session 91

54. Section of .cshrc File for Setting up Intermetrics VHDL in the AFIT VLSI Lab ... 93

55. Example Initialization of Intermetrics VHDL 94

56. Example Format for One LP in an lpx.arcs File 98

.,57. Edge-Triggered D Flip-flop 114.-

58. VHDL Descriptions of Two- and Three-Input NAND Gates 115

59. Structural VHDL Description of Edge-triggered D Flip-flop 116

60. VHDL Description of Test Bench for Edge-triggered D Flip-flop 117

61. Schematic of Test Bench for Edge-triggered D Flip-flop 118

62. VHDL Description of Configuration Tile for Edge-triggered D Flip-flop 119

63. VHDL Report Description for Edge-triggered D Flip-Flop 119

64. Shell Script for Compiling, Model Generating, Building, and Simulating the Edge-

triggered D Flip-flop using Intermetrics' Simulator 120

65. Edge-Triggered D Flip-flop Labeled with Behavior Id Numbers 120

66. Edge-Triggered D Flip-flop Partitioned Into 2 LPs 121

67. Edge-Triggered D Flip-flop Partitioned Into 3 LPs 121

68. Wallace Tree Multiplier 132

69. Hierarchy of VHDL Source Code for the Wallace Tree Multiplier 132

70. Top Level Schematic of Wallace Tree (wallace.tree_2) 133

71. Schematic of Carry Save Adder Tree (wallace.tree-l) 134

72. Multiplicand Generator 135

73. Multiplicand Subgenerator 136

74. Carry Save Adder used in Wallace Tree Multiplier 137

75. Full Adder used in Wallace Tree Multiplier 138

xi

List of Tables

Table Page

1. Length of Intermediate C Code Circuit Descriptions 39

2. Files Necessary for Maintenance and Operation of the Postprocessor 91

3. Files Necessary for Maintenance and Operation of VSIM 91

4. Files Necessary for Maintenance and Operation of Parallel VHDL Simulations using

SPECTRUM 92

5. Files Necessary for Maintenance and Operation of VMAP 92

6. Other Files 92

7. Example Format for the lpx.map File 99

8. Results of 1, 2, and 3 LP Configurations for the Edge-triggered D Flip-flop 114

9. Summary of Performance Data 140

10. Summary of Performance Data (cont.) 141

xii

AFIT/GCE/ENG/92D-01

Abstract

Many VLSI circuit designs are too large to be simulated with VHDL in a reasonable amount

of time. One approach to reducing the simulation time is to distribute the simulation over several

processors. This research creates an environment for designing and simulating structural VHDL

circuits on the Intel iPSC/2 and iPSC/860 Hypercubes. Logic gates and system behaviors are

partitioned among the processors, and signal changes are shared via event messages. Circuit simu-

lations are run over the SPECTRUM parallel simulation testbed, and the null-message paradigm is

used to avoid deadlock. Structural circuits ranging from forty to over one thousand logic gates are

correctly simulated. Although no attempt is made to find optimal partitioning strategies, speedups

are obtained for some configurations.

.ii,

PARALLEL SIMULATION OF

STRUCTURAL VHDL CIRCUITS ON

INTEL HYPERCUBES

L Introduction

1.1 Background.

Advances in Very Large Scale Integrated (VLSI) circuit technology increase the transistor

count on a chip by about 25% per year, doubling every three years (17:17). In order to efficiently

design increasingly complex VLSI circuits, designers use simulation tools to validate their circuits

prior to fabrication. In 1979, the Department of Defense (DOD) started the Very High Speed

Integrated Circuit (VHSIC) program to employ the use of high density VLSI circuits in military

systems. The VHSIC Hardware Description Language (VHDL) program began in 1983 to stan-

dardize the tools needed to efficiently design and test these circuits (13, 22).

Many circuit designs are too complex to be simulated with VHDL in a reasonable amount

of time. In an effort to improve VHDL's performance, the Defense Advanced Research Projects

Agency (DARPA) has sponsored the QUEST project, whose goal is a thousand-fold speed-up

in VHDL simulation (28:1-1). One approach to reducing the simulation time is to distribute the

simulation of the design over several processors. If VHDL's capabilities could be effectively mapped

to a parallel processor, the simulation would be faster and users could design and run more complex

circuits. Efforts at AFIT have centered on creating a parallel implementation of VHDL for this

purpose.

In 1991 AFIT investigated the data structures of Intermetrics' sequential VHDL simulator

and demonstrated a way to intercept intermediate C code from Intermetrics' compiler, transform it,

1

and run parallel simulations on the Intel iPSC/2 Hypercube (10). This research effort composes the

tools necessary to create and run structural VHDL simulations on the Intel iPSC/2 and iPSC/860

Hypercubes.

1.2 Problem Statement.

AFIT has investigated implementing a parallel VHDL simulator to decrease the simulation

times of VLSI circuits; however, an automated method for creating parallel VHDL circuit descrip-

tions, a correct parallel simulator, and a common distributed testbed are necessary to generate and

simulate large VHDL circuit models.

1.3 Research Objectives.

The main objective of this thesis is to demonstrate and test the capability of mapping large

sequential VHDL circuit descriptions to distributed processing systems. The main goals are to

* automate the procedures for generating hierarchical, structural VHDL models.

e create a VHDL simulator that correctly simulates structural VHDL circuit descriptions and

is flexible enough to partition simulations among the processors of a distributed system.

* provide a common testbed to facilitate experimentation with parallel simulation protocols

and investigation into optimizing circuit partitioning strategies.

* demonstrate the simulator with several VHDL models.

e determine if speedup can be achieved through the use of parallel simulations.

2

1.4 Assumptions.

Comeau did the preliminary research into transforming Intermetrics' VHDL models into mod-

els that can be simulated in a parallel environment. The following assumptions build upon Comeau's

research (10:1-3):

"* While strict meanings of "parallel" and "distributed" processing systems vary from source to

source, AFIT has generally accepted "parallel processing" to indicate processing on a single

computer composed of multiple processors, while "distributed processing" refers to processing

among several "independent" computers across a network. Nonetheless, as with Comeau's

thesis, this research uses the terms "parallel" and "distributed" interchangeably throughout.

"* The parallel computers used for development and research are the Intel iPSC/2 and iPSC/860

Hypercubes.

"* Source code is written in the standard C programming language (non-ANSI).

"* To further research efforts for both DARPA and AFIT and stay consistent with the AFIT

environment, the Chandy-Misra conservative synchronization algorithm for event-driven sim-

ulations is used. In this thesis, the null-message protocol is implemented via the use of a

parallel simulation environment known as SPECTRUM (Simulation Protocol Evaluation on

a Current Testbed using Reusable Modules) (32).

"* The output from the analyze, model generate, and build phases of the Intermetrics VHDL

compiler are correct and accessible.

"* The VHDL test cases are within the VHDL subset that is used to demonstrate parallelized

VHDL.

"* VHDL source code is compiled and model generated in Intermetrics VHDL, Version 2.1,

September 1990.

3

1.5 Scope.

Comeau outlined ten steps to transform Intermetrics' intermediate C code into modules that

can run on a parallel VHDL simulator (10:4-6). These operations are automated, and new steps

are added to reduce unnecessary function calls and enhance simulator capabilities.

A new parallel simulator, VSIM, is written. The concepts for VHDL simulation are taken

from Intermetrics' simulator, and from Comeau's parallel VHDL simulator called PVSIM. The par-

allelization of VSIM is accomplished with minimal changes to the application by utilizing SPEC-

TRUM.

The parallel simulation protocol is implemented using SPECTRUM "filters." This provides

a level of modularity that aids future experimentation with new protocols and instrumentation.

Various circuits are implemented and tested. Also, feedback among LPs is demonstrated.

1.6 Limitations.

1.6.1 VHDL Source Code Limitations for VSIM. The subset of circuits that can be simu-

lated with VSIM includes structural descriptions of logic gates and other simple processes. Circuits

are created the same way as for Intermetrics' circuits, with the following limitations:

Signals can be bits or bit-vectors; however, bit-vector inputs must be described one bit at a

time, e.g., Bus(0) <= 'I' after 10 no;.

Processes should be one-line descriptions (Out1 <= Ini AIND In2 after gate-delay;); however,

multiline processes-delimited by begin and end process may be used provided they either wait

on all signals, or the process only executes once. For example, if a process has input signals a, b,

and c, then the following process declarations are acceptable:

process
begin

4

wait on a, b, c;
-- process description here

end process;

process(a,b,c)
begin

-- process description here
end process;

process
begin

-- process description here
wait; -- that is, wait indefinitely

end process;

It is uncertain how functions and procedures may act in VSIM. For example, functions to

describe multi-valued logic-or bus resolution-have not been implemented or tested.

As in the case with functions, VHDL attributes, "buffer" ports, file I/O, etc., have not been

implemented or tested.

1.6.2 Postprocessor Limitations. A postprocessor, pbuild, is designed to transform Inter-

metrics generated intermediate C code for parallel simulation with VSIM. Therefore, the postpro-

cessor only works for Intermetrics-generated intermediate C code.

The postprocessor depends heavily on recognizing unique patterns in the intermediate C code.

This is accomplished using lex, a UNIX-based lexical analyzer. If future enhancements are to be

made to the postprocessor, or if the subset of VHDL circuits is to be expanded, each step of the

postprocessor should be re-evaluated for possible impact.

5

1.6.3 VSIM limitations. The user must first run the parallel simulator on one node to

identify behavior id's.1 This is accomplished by enabling a "NAPPINIG" definition in the simulator.

Only then can a circuit-to-process mapping be defined.

Circuit partitioning must be done "by hand," i.e., the user creates the appropriate files to

define logical process (LP) relationships and behavior-to-LP assignments.

The "receive message" filter used with SPECTRUM is based on a current filter called "chan-

clocks." However, the new filter is modified to have access to the local LP's next event time

in VSIM; therefore, the protocol (in the SPECTRUM filter) is modified in an application specific

manner.

When OUTPUT is defined in VSIM, every signal change is reported. This becomes a bottleneck

in parallel simulations on Intel Hypercubes, as processors contend for common resources, e.g., the

host operating system and the disk drives.

1.7 Thesis Overview.

Chapter 2 analyzes the current research efforts in parallel discrete-event digital simulation and

how they relate to this thesis. Also, other efforts in parallel VHDL simulation are reviewed. Chapter

3 provides the methodology for implementation of the post-processor, the parallel VHDL simulator,

and enhancements to the parallel VHDL environment. Implementation of this methodology is

discussed in Chapter 4. Chapter 5 discusses the research findings and results. Finally, conclusions

and recommendations for further research are included in Chapter 6.

In addition, the following appendices are included:

* Appendix A: Definitions.

'A "behavior" is an executable process representing a VHDL logic gate or other simple process.

6

o Appendix B: AFIT Parallel VHDL User's Guide. Documentation on how to prepare and run

VHDL descriptions in the parallel processing environment. Also, a test case is demonstrated-

using an edge-triggered D flip-flop.

o Appendix C: Subset of VHDL Source Code for Parallel Simulation. Describes, with examples,

the subset and syntax for VHDL source that can be simulated with the parallel VHDL

simulator.

o Appendix D: Design of the Wallace Tree Multiplier.

o Appendix E: Summary of Performance Data.

1.8 Summary.

VHDL models are executed sequentially in current commercial simulators. As chip designs

grow larger and more complex, simulations must run faster. One approach to increasing simulation

speed is through parallel processing. This research transforms the hierarchical structural models

created by Intermetrics' sequential VHDL simulator into models for parallel execution on the Intel

iPSC/2 and iPSC/860 Hypercubes.

7

I. Background

2.1 Overview.

In this chapter, several simulation techniques are discussed, including traditional simulation

techniques on sequential machines, distributed simulation techniques, and digital logic simulation.

Also, previous attempts to parallelize VHDL are reviewed.

2.2 Traditional Simulation.

Many real-world systems can be modeled and simulated, using computers, to study their

behavior under various conditions. Examples of simulators include battlefield simulators, flight

simulators, simulations of factory assembly lines, electronic circuit simulations, etc. In continuous

simulations, the state of the model may change continuously over time. Discrete-event simulations

are used to model processes whose states change discretely at specified points in time, as shown in

Figure 1 (27). Continuous systems, like digital circuits, may also be modeled with discrete-event

simulations.

Sequential simulators usually utilize three data structures (15):

1. The state variables which describe the state of the system.

2. An event list which contains the schedule of all future events.

3. A global clock variable to maintain the simulation time.

There are two main methods of implementing discrete simulations-time-driven simulations

and event-driven simulations. In time-driven simulations, the global simulation clock is used to

advance the simulation uniformly through time. With respect to digital circuits, the time-driven

approach is not very efficient. If a circuit is in a quiescent state for a long period of time, waiting for

the clock to advance becomes time consuming and reduces performance. In event-driven simulation,

8

state
variable

time
24 5 8 11 1516 25

event times

Figure 1. Response Measurement from a Discrete-Event Simulator (27)

processes schedule their outputs on a global event list. Then the simulation clock can advance from

one event time to the next, since no computations need to occur between event times (26:136-137).

Given this introduction to traditional discrete-event simulation, techniques for distributed

simulation can be reviewed.

2.3 Distributed Simulation.

With traditional techniques on sequential processors, large simulations in engineering, meteo-

rology, military applications, and circuit design, to name a few, consume large amounts of time (15).

Parallel discrete-event simulation, or distributed simulation, refers to the execution of a simulation

on a number of processors. Ideal candidates for distributed simulation are systems whose phys-

ical processes (PPs) execute concurrently and can be modeled by message passing among their

corresponding logical processes (LPs) (7:198-199). Electronic circuit systems can be simulated in

this way, where the LPs representing the components, or groups of components, that make up the

circuit are partitioned among the processors. Hence, the time required to complete a simulation

should decrease since computations are executed in parallel (5:11).

9

2.3.1 General Performance Model. The use of a global clock in distributed simulation con-

stitutes a bottleneck because the LPs would all operate in lock-step. At any global time t, a number

of LPs may have nothing to do. In asynchronous models, however, each LP contains a local vir-

tual time (LVT), and the LPs are allowed to progress at irregular intervals. In most models, UPs

communicate via time-stamped messages in the form of tuples, (tk, mk), where mk is the message

sent at LVT tk (7:199). The specific rules for message passing depend on the particular protocol.

A global event-list would also be a bottleneck in distributed simulation. Therefore, each

LP usually maintains its own event-list, or queue. Events either received or self-generated can be

scheduled in the local event-list, if necessary, as well as sent to "downstream" LPs, as required by

the model (7:198).

2.3.2 Speed- Up and Efficiency of Distributed Simulations. If the simulation time for p pro-

cessors is Tp, and the time for the same simulation on one processor is T1 , then the speed-up of the

distributed simulation is T 1/Tp. An ideal speed-up would be p. The efficiency of the simulation

is therefore the speed-up divided by p. The efficiency indicates how much the communications

overhead, time-management, amount of concurrency, and load imbalance among LPs deters the

overall speed-up (29:43) (14).

2.3.3 Distributed Simulation Protocols. Asynchronous simulation protocols can be loosely

classified as either conservative or optimistic. Conservative protocols allow an LP to advance its

LVT only when it is absolutely certain it cannot receive an event with a time-stamp less than the

new LVT. Optimistic protocols allow each LP to proceed at its own pace even though events may

arrive out of the past. Time Warp corrects out of order messages by rolling back, i.e., restoring

its state to a time prior to the actual message time and then recomputing forward. Therefore,

optimistic protocols require state saving capabilities for each LP.

10

2.3.3.1 Conservative Distributed Simulation Protocols. Chandy and Misra have pro-

posed an asynchronous conservative protocol where each LP manages its LVT and event-list as

follows:

An LP simulates the corresponding PP in the following manner. Let the sequence of

messages sent by LPi to LPj be (tI, m), (t 2 , m 2), (t 3 , m3),... We require that

1. 0 < tI :< t 2 _< t 3 ... , (monotonicity) and

2. PPi must have sent message mk to PPj at time ti, k = 1,2,3.... and

3. PPi must have sent no other messages to PPj besides Mi, M2 ,. ... , Mk,.. .i.e., the
sequence of messages sent by an LP must correspond exactly to the actual sequence
of messages sent by the corresponding PP. During the course of the simulation, if
LPi sends LPj a message (tk, ink) it implies that all messages from PPi to PPj
have been simulated up to time tk. (7:199)

This model requires static allocation of processes, i.e., the distribution of LPs among the

processors is fixed, and the communication paths among the LPs is known prior to simulation (9).

Digital circuit simulations, including VHDL, conform to this assumption. This model also assumes

no buffering of messages, so a sending LP must wait for all downstream LPs to receive a message

before it can progress. Also, an LP must wait for messages from upstream LPs whose clock values

are equal to its LVT (7:200).

Misra shows that given this protocol, deadlock can occur in two different ways (25:55). Con-

sider the simple model of Figure 2. Suppose for every message sent by LPO, LP1 generates a

message and only sends it to LP2. Then LP4 never receives a message from LP3, because LP3's

LVT is still at 0. Therefore, the LVTs of LP4 and LP5 each remain at 0. The other situation that

can cause deadlock is cyclic waiting, as shown in Figure 3. The numbers on each arc correspond

to the time-stamp of the last message sent. None of the LPs send a message without receiving one

first, i.e., they don't predict future messages. LP2 has received a message at t = 20 and advanced

its LVT to 20, and hasn't generated a corresponding output message (this particular message was

consumed). So, LPI is waiting at t = 20 to receive a message from LP3, and LP3 is waiting at

t = 15 for a message from LP2, while LP2 is waiting on LP1. Hence, deadlock has occurred (25, 7).

11

Figure 2. A Distributed System That Does Not Progress (25:56)

Figure 3. A Distributed System That Deadlocks (25:56)

12

The two methods for handling deadlocks are avoidance and detection. Initially, Chandy and

Misra proposed the use of null messages as a means of deadlock avoidance (6). A null message

contains just an updated time, and no other state information (t, NULL). The null message

guarantees that no messages are sent with a time less than t. In the case of Figure 2, every time

LP1 sends a message to LP2, it sends a null message with the same time-stamp to LP3. This allows

LP3, LP4, and LP5 to progress. For the cyclic waiting problem of Figure 3, after LP2 receives

a message from LP1 at t = 20, it sends (20 + tLP2delay, NULL), where tLP2delay corresponds to

the propagation delay of LP2. If tLP2delay = 5, then LP2 sends (25, NULL), and LP3 responds

by sending a null message to LP1 with LP3's propagation delay added to the time-stamp, e.g.,

(25 + tLP3delay, NULL). In this way, the simulation advances.

The null message approach is costly because a large fraction of messages, and therefore

communication overhead, turns out to be null messages (7). Another technique proposed by Chandy

and Misra is to allow the simulation-or a subset of the simulation-to deadlock and then use a

master controller to detect and recover from deadlock (7:202). Detection can be accomplished

using the termination detection algorithm of Dijkstra and Scholten, or from a method proposed by

Chandy and Misra (8:148) (7:202). Then, the controller polls all LPs that are deadlocked for their

earliest next event time. The minimum of these times is the safe time for all deadlocked LPs to

advance, since no events can occur before this safe time. Therefore, the controller broadcasts the

safe time to all affected LPs, which in turn update their LVTs, and the simulation continues.

The use of a central controller affects simulation performance since it must periodically in-

tervene and evaluate the simulation to see if deadlock has occurred. However, Chandy and Misra

maintain the interference is not expected to be a bottleneck since active interference occurs only

at deadlock (7:202).

2.3.3.2 Optimistic Distributed Simulation Protocols. The Time Warp mechanism for

distributed simulation is an optimistic protocol. LPs are allowed to go forward in time, risking the

13

chance that another process may send a message that affects the LP's history. The LP then "rolls

back" to the appropriate time in order to handle the new message. This requires each LP to have

state-saving capabilities, and to have the ability to "unsend" messages that now are invalid. Also,

because of its rollback capability, the Time Warp mechanism can handle dynamic process allocation

and connectivity (9). In his survey of parallel discrete-event simulation paradigms, Fujimoto gives

the following description of Time Warp:

The Time Warp mechanism, based on the Virtual Time paradigm, is the most well
known optimistic protocol. Here, virtual time is synonymous with simulated time. In
Time Warp, a causality error is detected whenever an event message is received that
contains a timestamp smaller than that of the process's clock (i.e., the timestamp of the
last processed message). The event causing rollback is called a straggler. Recovery is
accomplished by undoing the effects of all events that have been processed prematurely
by the process receiving the straggler, i.e., those processed events that have timestamps
larger than that of the straggler.

An event may do two things that have to be rolled back: it may modify the state of
the logical process, and/or it may send event messages to other processes. Rolling back
the state is accomplished by periodically saving the process's state, and restoring an
old state vector on rollback. "Unsending" a previously sent message is accomplished by
sending a negative or anti-message that annihilates the positive messages. If a process
receives an anti-message that c=rresponds to a positive message that it has already
processed, then that process must also be rolled back to undo the effect of processing
effects of the erroneous computation to eventually be canceled. It can be shown that
this mechanism always makes progress under some mild constraints.

As noted earlier, the smallest timestamped, unprocessed event in the simulation is
always safe to process. In Time Warp, the smallest timestamp among all unprocessed
event messages (both positive and negative) is called global virtual time (GVT). No
event with timestamp smaller than GVT will ever be rolled back, so storage used by
such events (e.g., saved states) can be discarded. Also, irrevocable operations (such
as I/O) cannot be committed until GVT sweeps past the simulated time at which the
operation occurred. The process of reclaiming memory and committing irrevocable
operations is referred to as fossil collection. (15)

2.4 Overview of SPECTRUM.

In 1988, Reynolds recognized the existence of a spectrum of options for parallel simulation

protocol designs (30). In order to study classes of protocols for classes of applications, the Uni-

versity of Virginia developed SPECTRUM (Simulation Protocol Evaluation on a Current Testbed

14

applicion ai aritm ttbed library

Firr pro4oc Tb

---------------------------- -----.------. -- -- - .p

usingReusaleFMoules (32. BokDarmoh SPECTRUM iacomn Testbed usdfr3raig1 aale)iu

lations by taking an application and breaking it into application components, i.e., "pieces" of the

application that run concurrently. Each application component, along with a process manager and

node manager, make a logical process (LP), as shown in Figure 4. The process manager provides

LP-level functions to the application for initialization, local clock management, and event han-

dling. The node manager provides hardware-specific functions to the process manager for event

traffic among the LPs. To implement specific protocols, filters are written that "intercept" an LP-

level function call by the application. The filters may then invoke protocol-specific actions, such as

null message generation, LP polling for a message, etc.

AFIT has continued to maintain the SPECTRUM testbed as a baseline for queueing sim-

ulations (33), battle simulations (3), and VHDL simulations. Also, research is being conducted

on a hardware coprocessor that would emulate the basic SPECTRUM functions with microcode

capability to modify simulation protocols (11). For details on the SPECTRUM environment at

AFIT, refer to Hartrum (16).

15

2.5 Other Parallel VHDL Research.

In 1989, Proicou (28) developed a distributed system consisting of a scalable kernel that

supports VHDL simulations on the Intel iPSC/2 Hypercube. The distributed simulation kernel

was an extension of the AFIT VHDL tool set, described in (12). The simulation ran over the

SPECTRUM testbed. Proicou found that a general purpose simulation kernel may not be able to

take advantage of the presence or absence of feedback loops in the simulation (28:7-1). In general,

it was determined unlikely that one distributed kernel design is efficient enough to provide good

performance for the wide range of VHDL models. For example, primarily behavioral descriptions

may contain a small number of large processes, while primarily structural descriptions may contain

a large number of very simple processes (18).

In 1990, Ball and Hoyt (1) reported work in progress to implement a parallel VHDL simulator

using "Adaptive Time Warp," in which they look for better performance then Chandy-Misra or

Time Warp. Adaptive Time Warp is similar to Time Warp; however, it attempts to reduce "time-

faults," i.e., messages that cause roll-back. If a process has recently experienced a high number of

"time-faults," it suspends execution for a short time, known as the "blocking window," which is

proportional to the message bandwidth. Work is in progress to develop a testbed which implements

this strategy.

Comeau's 1991 thesis investigated how to modify a commercial VHDL compiler and simulator-

Intermetrics VHDL-for parallel simulation on the Intel iPSC/2 Hypercube (10). In so doing, he

looked for parallelism in the intermediate C code generated in the "model generate" phase of compi-

lation. Then, he modified the C code for compatibility with the iPSC/2 and his parallel simulator,

PVSIM. PVSIM is the product of a portion of Intermetrics' C source code simulator routines, along

with routines added by Comeau. He tested the simulator on three 8-bit adder circuits: a carry-save

adder, a carry-lookahead adder, and a ripple-carry adder. In general, simulations using four to

16

eight processors exhibited a speedup at least twice that of simulations on one node. His results led

him to the following conclusions:

"* Minimize and balance the number of active signals in a logical process.

"* Carefully modify the Intermetrics' generated C source code.

"* Ensure a high computation to communication ratio. (10:6-12)

This thesis builds on the lessons learned in Comeau's research. For example, modifying Intermetrics'

C code is now automated.

In 1992, Zhang (34) investigated possible methods to partition a VHDL design for hierarchical

distributed simulation. He evaluated VHDL entities, blocks, and processes for modularity and con-

currency. Zhang reported the following observations with respect to determining the optimal struc-

ture (entity, block, or process) for use as an "atomic model" in parallel VHDL simulation (34:203):

"* The entity descriptions define a clear interface between components; however, using the entity

does not fully utilize the inherent parallelism among the blocks and processes.

"* The block would exploit more parallelism than the entity, but not as much as the process.

Also, blocks can be nested, which causes concurrency problems.

"* VHDL forces concurrency at the process level, so for the greatest amount of parallelism,

Zhang concludes that the process is the best atomic model for parallel simulation. However,

processes do not have a clearly defined interface-as is the case with entities and blocks.

Zhang introduces the refined process, which is generated by defining a connection port for every

signal or port in a process and removing wait statements. In this manner, the process interface is

clearly defined. While this method exploits the maximum amount of parallelism and provides a

way to theoretically study the behavior of a VHDL design, Zhang concludes that it is not robust

enough for practical use (34:204).

17

2.6 Summary.

Discrete-event simulation mechanisms are commonly used in sequential simulations. By in-

troducing the concept of logical processes, local virtual time, and message-passing, asynchronous

simulation protocols can extend simulation principles to exploit parallel and distributed computers.

The conservative Chandy-Misra protocol guarantees an LP does not receive messages out of order

with respect to time, but a mechanism must be provided to avoid or detect deadlock. The optimistic

method of Time Warp allows LPs to proceed at their own pace based on present information. If

a message comes in with a time stamp in the past, then an LP must roll back to that simulation

time in order to handle the message.

As interest in increasing the performance of VHDL grows, a number of research efforts have

been conducted to investigate ways to map VHDL simulations to parallel processors. This thesis

continues the work initiated by Comeau-mapping Intermetrics' VHDL capabilities to the Intel

iPSC/2, and now also to the iPSC/860.

18

III. Methodology

3.1 Introduction.

When a VHDL circuit is compiled with the Intermetrics VHDL toolset, the intermediate

C code can be intercepted and transformed to be linked with AFIT's parallel VHDL simulator

(VSIM). VSIM can run sequentially on a single processor, or in parallel on the Intel iPSC/2 or

iPSC/860 Hypercubes. For parallel simulations, VSIM runs over SPECTRUM. The subset of

VHDL circuits that can be simulated with VSIM includes structural descriptions of logic gates

and simple processes. The "behavioral instances" which represent these processes are grouped into

logical processes (LPs) and the LPs are distributed among the nodes of any cubesize.

Comeau identified the data structures and the basic cycle required for simulation (10:3-9).

This chapter reviews the data structures, simulation cycle, and requirements for parallel simulation.

3.2 Overview.

In order to run a sequential VHDL simulation with the Intermetrics' VHDL toolset, the circuit

designer must compile the VHDL source code, and then build and simulate the circuit model. This

process is shown in Figure 5.

Circuits are first compiled using the vhdl command. This generates an IVAN file (which

stands for Intermediate VHDL Attributed Notation). The IVAN file contains the intermediate

C code descriptions of the circuit components-which the simulator uses. By using Intermetrics'

compiler, the syntax and semantics of VHDL circuit descriptions have already been checked, and

correct C code is automatically generated. Normally, generation of the IVAN file is transparent to

the VHDL circuit designer.

During the model generate phase, the specific C code descriptions-and their header files-are

extracted from the IVAN file and object files are created. These files are also normally transparent

19

vhdl

model

.buiild

tpmpile
script

wf

simulate

wih

h

; report-

Figure 5. Simulation Session Using Intermetrico' Toolset (10:3-8)

to the designer; however, for pao lle, si uatir-se they are transformed into files that are compatible

with VSIM.

In the build phase, a compilation script is generated that compiles and links the C modules

with Intermetrics' simulator modules for operation. Now, the circuit can be simulated with the

aim command, and a report can be generated with the rpt command using Intermetrics' report

control language.

For parallel operation, the intermediate C code is transformed into C code that can be linked

with VSIM and run on the hypercube, as shown in Figure 6. For this to happen, the code is

transformed using a postprocessor called pbuild, which reads the compilation script file and uses

plex to extract and transform the intermediate code. The new code is linked with VSIM, which,

together with SPECTRUM, runs the simulation on the hypercube.

20

Ing

.ht files

Figure 6. Parallel Simulation Session

3.3 Data Structures.

The data structures for sequential operation are based upon Intermetrics' VHDL simulator.

The four main data structures are as follows:

* Behavior Instances. The behavior instances are used to describe the behavior of each

component (AND gate, OR gate, etc.) and other types of processes. Behavior instances

contain a unique id number and a pointer to their execution routine in memory. Several

behavior instances may share the same execution routine, e.g., all AND gates in a circuit may

use the same algorithm to execute. 1 The basic structure for behavior instances is shown in

Figure 7.

"* Signal Records. The signal records maintain the current state of each signal, including a

unique identifier, signal name, current value, size, and pointers to behavioral instances (to

bThis would be true if, for example, all AND gates used the same entity/architecture pair.

21

typedef struct BHIESTS C /* behavior instance */
BHKIND prty; /* kind (user, system, etc.) */
INT32 id; /* id */
ERRT (*exec)(); /* behavior function */

} BHINST;

Figure 7. Basic Structure for Behavior Instances

typedef struct { /* signal record */
UI1T32 id; /* id */
char *name; /* name */
unsigned size: 4; /* size of data value (bytes) */
UI1T32 cval; /* current value (offset) */
CONIT *conns; /* behavioral connections */

} SRREC;

Figure 8. Basic Structure for Signal Records

identify each signal's connections). The current value field is an offset from a global address

space whose base is denoted by the global variable cv. See Figure 8 for an example of the

signal record structure.

e Behavior List. This list contains all behaviors scheduled to execute for the current sim-

ulation time. At the beginning of the simulation (t = 0), all behaviors are scheduled for

execution to initialize their input and output values. As behaviors are executed, they are

removed from the list. After the simulation clock advances past zero, signal changes cause

affected behaviors to be re-scheduled and re-executed. The behavior list is a simple linked-list

called tmpbeh, see Figure 9.2

2 The variable name tupbeh is used to maintain consistency with Intermetrics' naning conventions.

22

typedef struct TNPKS { /* behavior list */
BHIIST *beh; /* behavior instance pointer */
struct TNPKS *nextb; /* next behavior */

TKPK;

Figure 9. Behavior List Structure

typedef struct SIGRECS { /* active record structure *[
int time; /* signal change time */
SRP sr.ptr; /* signal record */
int value; /* possible new value */
struct SIGRECS *next-sig-rec;

} SIGREC;

Figure 10. Active Record Structure

a Active Records. This is the simulator's next-event list, called actv. An "event" corresponds

to a behavior output value that may be a signal change. Each entry contains an event time, a

pointer to the correct signal in the signal record list, and a possible new value for that signal

(depending on delay type, etc.), as shown in Figure 10.

An example of the interrelationship of the VHDL data structures is shown in Figure 11. Here,

signal number 2, called CI!, is changing from a '0' to a '1' at time 50. The active record entry has

the new value, and a pointer to the specific signal record. The signal record has a pointer to the

global memory space in cval, and the list of affected behaviors, i.e., the AND gate and XOR gate.

Therefore, these behaviors are added to the behavior list for execution at time 50.

3.4 Sequential Simulation Cycle.

The sequential simulation cycle for VSIM is shown in Fig 12. The following "routines" run

23

Signal Records
Active Records id size name cval cowns

time 50 0 1 Y 0 0,1

sr..ptr 2 1 1 X 1 0,1
vle T2 1 CIN 2 ~2,3-
vue1'3 1 COUT_1 3 4

nextsig...rec Nil ~ I SM -~,

5 1 COUT 2 5- 4
6 1 sum 6
7 1 COUT 7

Behavior Ust Behavioral Instances

beh 0

exec ORD
inputO 3
inputi 4 anMmr
outputo 7

22

Active
Records (actv)

Posttm~ t

Figure 12. The VHDL Simulation Cycle (10:3-15)

the simulation:

"* post. Posts each event to the active record list whenever a behavior has executed.

"* get-low-time. Returns the lowest next-event time from the active records list. The simula-

tion clock is updated to this "low time." Records with this time are removed from the active

record list and sent to the compare-values routine.

"* compare-values. Compares the new data value of each event (new to the old data value in

memory that is associated with that event's behavior instance, i.e., circuit component. If the

value is the same, the event is simply ignored (the message is consumed); otherwise, affected

behaviors are scheduled on the behavior list for operation.

"* execute.behavior. Removes behaviors from the behavior list and executes them.3

3 Actual execution of each behavior instance occurs in the intermediate C code. These behavior functions call the
post function directly.

25

sim-it 0)
{

SIGREC *signal;

/* while active record list and behavior list are not empty */
while (actv != NULL 1I tmpbeh != NULL) {

while (tmpbeh != NULL) {
execute.behavior(); /* execute behavior and post */
remove_behavioro;

}
update-sim-time(get-low-timeo); /* process low time */
while (signal = active-exists(*sim.time)) {

if (unchanged(signal)) { /* compare values */
remove.signal(signal);

}
else {

update.sigreal (signal);
schedule-behaviors(signal);
remove.signal (signal);

}
}

Figure 13. Main Simulation Loop in VSIM

At the beginning of the simulation, input signals are present in the active record list, and

all behaviors are scheduled for execution at t = 0. The simulation starts at execute-behavior.

The main (sequential) simulation loop in VSIM is shown in Figure 13. This Figure shows that the

simulation cycles from executing behaviors to extracting signal changes until the active list and

behavior list are empty. Specifically, while either list is not empty, perform the following:

1. Execute all behaviors on the behavior list, posting the resulting signals after each execution.

2. Update the simulation clock to the next lowest time on the active list.

3. Extract every active record with a time-tag equal to the simulation clock.

26

4. If the active records indicate a signal change (when compared to their current value in mem-

ory), then update the signal's value in memory and schedule affected behaviors.

5. Go back to step 1.

3.5 Active List Management.

A behavior executes at time t when one of its input signals changes at time t. When a behavior

executes, the resulting output signal is posted to the active list in time order at t + tDELAY, where

tDELAY is the delay of the behavior. If n input signals change at t, the behavior executes n times

and calls the post routine n times to post the resulting signal output at t + t DELAY. Since the

behavior executes on each input signal change, the correct output posted to the active list always

corresponds to the last signal change for a given time, t. Therefore, for correct operation, if an

event to be posted matches an event behavior id and time stamp in the active list, the old event is

replaced by the new event.

In VHDL, a component may be defined to have an inertial or transport delay-type. An inertial

delay corresponds to components which require input signals to persist for a given time before the

output signal changes. A transport delay is similar to a "wire delay," the output gets the function

of the inputs after delay. The default delay-type for logic gates is inertial.

3.5.1 Transport Delays. Figure 14 shows an AND gate with a transport delay. The output

function, Out-1 = InI AND In_2 after gate delay, occurs regardless of the time duration of the

input signals or any combination of input signals. Therefore, no special action is required when

posting the output to the active record list.

3.5.2 Inertial Delays. The rule for inertial delays is that the output does not change within

the inherent delay of the logic gate. For active list management, if a behavior executes at time t

and its corresponding output is to be posted at tNEWEVENT = t + tDELAY, and a signal change

27

in-2 Out-i

Delay = 3ns

In l

1n-2

out_1 - -- -

0 1 2 3 4 5 6 7 8 9 10 IS

Figure 14. An AND Gate with a Transport Delay.

can be found for the same behavior with a time, tEVENT, where t < tEVENT < t NEW.EVENT,

then the output at t EVENT is removed if the signal value at t NEW.EVENT is the opposite of the

value at tEVENT.

Figure 15 shows an AND gate with an inertial delay of 3ns. At 3ns, In-2 goes to a logic '1'

and the gate is executed. As a result, an output of '1' is scheduled in the active list with a time

tEVENT = 6ns. At 5ns, In-2 goes back to '0', the gate is executed, and an output of '0' is generated

at t NEW..EVENT = 8ns. When the new event is posted, the change at t EVENT is identified and

removed from the active list because (t = 5) < (tEVENT = 6) < (tNEW-EVENT = 8) and the value

at t NEW..EVENT ('0') is the opposite of the value at t EVENT ('1').

28

in I Outi1

Delay U 3ns

In 1

In2

Out 1

0 1 2 3 4 5 6 7 8 9 io ns

Figure 15. An AND Gate with an Inertial Delay.

3.6 Transformation of Intermediate C Code.

The intermediate C code contains the circuit-specific information. During the simulation, it

is this code which instantiates the signals and behaviors, and their interrelationships. Also, this

code contains the functions that describe the behavior of every behavior instance. 4

VSIM does not support every capability of VHDL. For example, processes with wait state-

ments are not supported. Also, complex behavioral processes are not supported, e.g., processes that

manipulate integers (instead of bits) as signals. As this project grows, more of the intermediate C

code can be included and compiled with VSIM. To make the intermediate C code compatible with

the current version of VSIM, the following general steps must be taken:5

"* Identify and extract the files that were generated during the model generate phase.

"* Modify the #include directives accordingly.

4 Several behavior instances may share the same function.
5The specific steps-and their implementation in pbunld and plex-are discussed in Chapter 4.

29

"* Remove calls to trace routines and other trace statements. VSIM does not support tracing

capabilities.

"* Modify the mksig() function call to include a field for the signal name. This is so VSIM

output can refer to signals by name instead of identifier.

"* Modify the behavior functions to report the name of the entity/architecture pair it represents

(if MAPPING is turned on in VSIM).

s Change maino) to vhdA main() so VSIM can call it after initialization.

s Modify the intermediate code to call VSIM's init-cv() and sim.itC) routines for circuit

initialization and to start the simulation, respectively.

3.7 Parallel VHDL Simulation.

3.7.1 SPECTRUM and VSIM. As shown in Figure 16, VSIM is run over SPECTRUM in

order to "parallelize" the simulation and evaluate the effectiveness of various protocols on paral-

lel VHDL simulations while requiring minimal modifications to the original application-VSIM.

Spectrum allows the application to be broken into LPs, and the LPs communicate with each other

with function calls to the "LP manager"-lp.aan. c. These function calls can be interrupted by

"filters," which may provide additional handshaking, clock, or queue management, as required for

various protocols. The main functions are

s lp-init(). Ensures LPs are fully initialized. Builds filter tables, if any.

"* lp-get-event(). Get the next event from the SPECTRUM queue.

"* lp-post.event(0. Send event to specified LP.

"* lp-advance-times(). Advance an LP's local time.6

'Recently, a terminate filter was added to SPECTRUM. VSIM was not modified to take advantage of this new
filter.

30

VSIM

lp_man.c filtes

cube2.c

hypercube

Figure 16. VSIM on the SPECTRUM Testbed (One LP Shown)

The hardware interface to the Hypercubes is provided in the functions in cube2.c. In general,

lpmaz. c makes these calls, and the application (VSIM) makes only LP-level calls. LPs can be

partitioned among processors in a number of ways. Because of the multitasking capabilities of the

Intel 80386, a "logical process" does not have to correspond to a "physical processor." Therefore, a

simulation with eight LPs can be partitioned among one to eight processors of the iPSC/2.7 On the

iPSC/860 Hypercube, however, there must be a one-to-one mapping of LPs to processors, because

each i860 processor does not support multitasking.8

3.7.2 The SPECTRUM/VSIM Filters. The SPECTRUM filters for VSIM are based on a

previously existing filter called chanclocks. These filters provide the null-message protocol.

In general, messages among LPs are signal changes with the structure of Figure 17. Once an

event is received, VSIM converts it into an active record and posts it in the active list.

'AFIT's iPSC/2 Hypercube has eight Intel 80386 processors.
SThe iPSC/860 Hypercube at Wright-Patterson AFB has eight Intel i860 processors.

31

typedef struct event (
int from.lp; /* lp id of lp sending event */
int to.ip; /* ip id of destination ip */
mnt time; /* timestamp of event */
int event; /* event type or number */
int id; /* signal id */
int value; /* signal value */
struct event *next;

Figure 17. Event Structure for Message Passing

For this discussion, t NULL is the null message time, t QUE is the lowest time stamp of an

LP's SPECTRUM input queue, tNEQ is the "low time" in the local LP's active list (in VSIM), and

t DELAY is the output delay of an LP.9

The safe time, tSAFE, is the local virtual time (LVT) an LP can safely approach. It is the

minimum input time of all input arcs. In other words, an LP knows it does not receive a message

prior to this time, so it is safe to advance it's LVT to tSAFE. Incoming NULL messages are used

to update this safe time, and serve no other purpose.

Incoming events in SPECTRUM's queue are stored in time order. Therefore, if an event at

the head of this queue has a time stamp less than or equal to t SAFE, the event may be passed to

VSIM upon request. This is called a "valid event," because by the Chandy-Misra paradigm, it is

guaranteed that no messages are received prior to t SAFE.

8.7.2.1 Rules for Null Messages. Null messages are used to avoid deadlock, as dis-

cussed in Chapter 2. They are sent from an LP in three cases:

1. Upon initialization, every LP sends a null message at time t NULL = (0 + tDELAY).

9Strictly speaking, there is a unique output delay for every output arc of an LP, but for this thesis, it is amsumed
all output delays on each arc are the same.

32

2. When a signal is sent to another LP via an output arc at time t, all other output arcs are

sent a null message at time t.

3. When VSIM requests a signal and SPECTRUM has a valid event, it is returned to VSIM. If

there is no event ready, the receive filter checks to see if tNEQ :_ tSAFE. If so, a NULL pointer

is returned and VSIM continues. Otherwise, the filter waits-or blocks-for an incoming

event. When an LP is about to block, it sends a null message at tNULL = min((tSAFE +

tDELAY),tNEQ) to all downstream LPs. Therefore, deadlock is avoided because every LP

sends a "guarantee" that no messages are sent prior to t NULL, and every downstream LP can

update their safe times; therefore, cyclic waiting does not occur.

3.7.3 Modifications to VSIM for Parallel Simulation. The VHDL simulation can be parti-

tioned in a number of ways. One method would be to allow each LP to share the behavior instances,

but partition the signals among the LPs. When a behavior executes, the LP determines the owner

of the resulting signal, and an event is sent to the corresponding LP. Another method-and the

one implemented in this research-is to allow the LPs to share signals, but partition the behaviors.

This way, only valid signal changes are sent to other LPs. When a signal does change, this event is

sent to all LPs with affected behaviors. The behavior list of any LP would consist of only behav-

iors "owned" by that LP. Messages are introduced into the simulation cycle as shown in Figure 18.

This cycle is the based on the sequential simulation cycle of Figure 12; however, signal changes that

affect other LPs are now sent to those LPs as events. Similarly, after local behaviors are executed

and posted, if any upstream events are forthcoming, they are posted in the active record list. Each

LP runs the same simulation, but with different data in terms of behaviors. This is known as a

single program/multiple data (SPMD) configuration (21).

A parallel simulation in a 2-LP configuration is shown in Figure 19. This Figure shows the

connectivity if each LP had signal changes that affected behaviors on the other LP. Another possible

configuration for 2-LPs could be that only one LP depended on the other, "upstream" LP.

33

Get Event Active

Figre 8.Parlle VDLimuatonCcles Showntio forlnecL

* ~E LOW

Figue 1. A -LPcoTiguato

Pos4

Incoming Events
S~ Safe Time

Time SPECTRUM Queue

VSIM Active List for Local LP

Figure 20. Data Flow for Incoming Event

The process of receiving an event is shown in Figure 20. Incoming events are stored by

SPECTRUM in an input queue until requested by VSIM. When SPECTRUM receives events, the

input safe time is updated. When VSIM requests an event, the receive filter removes it from the

SPECTRUM queue (according the the rules for null messages in the previous section) and passes

it to VSIM. In turn, VSIM posts it in it's local active list and continues the simulation.

The main simulation loop of VSIM must be modified to accommodate parallel operation. In

sequential operation, the simulation is complete when the active list and behavior list are both

empty. This may not be the case for parallel operation. One LP may have empty active and

behavior lists, but an upstream LP may send another active record (signal change) to be put in the

empty active list. Therefore, each LP must run until the maximum simulation time is reached, as

shown in Figure 21.. In support of this change, the get-low1te ins) function is modified to return

the maximum time if the active list is empty. This method is correct for parallel and sequential

operation.

35

aimiit 0)
{

SIGREC *signal;

while (*sim-time < MAXTINE) {
while (tmpbeh != NULL) {

execute-behavioro; /* execute, and post */
remove.behavioro;

I
get-signal(); /* get from other LP and post */
update-sim-time(get-low-timeo); /* process low time */
while (signal = active-exists(*sim-time)) {

if (unchanged(signal)) { /* compare values */
remove.signal (signal);

I
else

update.signal (signal);
schedule.behaviors(signal); /* including sending to other LUs */
remove-signal (signal);

}
}

}

end-simo;

Figure 21. Main VSIM Simulation Loop Modified for Parallel Operation

36

int lp.own[MAXBEHAVIORS]; /* node location of each behavior */

Figure 22. Structure Identifying LP Ownership of Each Behavior

Figure 21 is also modified to do a get-signal() after all behaviors have executed for a

given time. This function calls lp.get-event() from SPECTRUM, converts the event into an

active record, and posts the new record into the active list. The send.signa.() routine is called

from the schedule-behaviors() function. This way, as behaviors are scheduled on the local

LP, it can check to see which other LPs have behaviors dependent on the signal change. The

send.signal() function, in turn, builds an event out of the signal change and calls SPECTRUM's

lp-post.evento.

Because each LP must know which behaviors it owns, a few modifications to VSIM data

structures must be made. VSIM is modified to read in a mapping of behaviors to LPs, and each LP

has this information in the array shown in Figure 22. In order to generate this mapping file, the

user must determine the behavior numbers and dependencies. To do this, VSIM is run in sequential

mode with MAPPING defined in its header file. The corresponding output is run through a program

called map, which generates a list of behavior numbers, names, delays, and dependencies. The

user can then use this data to specify which behaviors are grouped to which LPs.'° The specific

LP to processor configuration is defined at run time.

Also, the signal record structure is modified to contain an "ownership" flag, as shown in

Figure 23. Since there is a one-to-one correspondence between behaviors and their signal outputs,

after behaviors are executed and the corresponding signals records are created, the ownership flag

"1°This procedure is currently done manually, unless a random assignment of behaviors to LPs is used.

37

typedef struct { /* signal record */
UINT32 id; /* id */
char *name; /* name
unsigned size: 4; /* size of data value (bytes) */
UINT32 cval; /* current value (offset) */
CONNT *conns; /* behavioral connections */
BOOL i-own; /* for LP ownership */

} SRREC;

Figure 23. Basic structure for Signal Records Modified to Identify LP Ownership

is set to TRUE for that LP. LPs are responsible to send and/or report signal changes for those signals

that they "own."

3.8 Summary.

VHDL circuits are compiled with the Intermetrics VHDL toolset, and intermediate C code

is intercepted and transformed to run with AFIT's parallel VHDL simulator. VSIM runs either

sequentially on a single processor, or in parallel on the Intel iPSC/2 or iPSC/860 Hypercubes. For

parallel simulations, VSIM runs over the SPECTRUM testbed. This allows various protocols to be

tested by changing filters instead of making significant modifications to VSIM. Behavioral instances

are grouped into LPs and the LPs are distributed among the Hypercube's processors.

This chapter identified the key data structures, the simulation cycle, and the methodology

for breaking VHDL simulations into multiple LPs and running on multiple processors.

38

IV. Implementation

4.1 Introduction.

This chapter describes the implementation of the postprocessor functions pbuild and plex,

and the VSIM interface to the Intel Hypercubes with SPECTRUM. Also, implementation of the

null-message protocol using SPECTRUM filters is discussed. For examples of some of the key

source code that realizes this implementation, refer to Appendix G.

4.2 Postprocessor Implementation.

As shown in Table 1, even small VHDL circuit simulations are composed of thousands or tens

of thousands of lines of C code just for circuit description, i.e., not including simulator code. Large,

flat structural descriptions lead to very large intermediate files. It is better to build structural

circuits hierarchically and use a number of intermediate configuration descriptions than to use one

overall configuration file. The multiplier in Table 1 is configured hierarchically, while the shifters

are configured as one large structural description. Even though the multiplier has three times as

many gates as the 16-bit shifter, the intermediate code is 37% smaller.

In order to decrease the amount of time required to transform this code into code compatible

with VSIM, a program called pbuild is created to automate this process.

Table 1. Length of Intermediate C Code Circuit Descriptions

Simulation File Size (bytes) T Lines of Code

SR flip-flop 32679 1304
edge-triggered D flip-flop 41063 1964
full adder 61155 2350
8-bit carry save adder 639757 26651
8-bit carry lookahead adder 569576 23106
8-bit ripple carry adder 504540 20700
8 X 8 wallace tree multiplier 564956 22032
16-bit bit/byte shifter 900307 34192
32-bit bit/byte shifter 1603124 59967

39

Pbuild reads the compilation script file generated during the build phase, concatenates the C

files that make up the specific simulation, and calls plex, which transforms the data by the rules

specified by Comeau (10:4-6) and in this thesis.

The user must determine the name of the build script generated during the build phase. This

can be accomplished by adding the Intermetrics debug switch -debug=cknd to the mg and build

commands. Then, after the build phase completes, the script filename is reported. For the example

of Figure 24-a model-generate and build session for an edge-triggered D flip-flop discussed in

Appendix B.3-the compilation script is FN23309.

An example build script (for the edge-triggered D flip-flop) is shown in Figure 25. This script

is used to generate an executable simulation called F123307, and located in /home/inter/shiplib

/tbreeden. This directory reprebents where files in the user's work library are located. The

intermediate C files required for VSIM are the main (F123311. c), and the . c files that correspond

to the .o files in the work directory. For each .o file in /home/inter/shiplib/tbreeden of

Figure 25, the corresponding . c filename is "two greater" than it's . o file. For example, the . c file

that corresponds to FN23304. o is F123306. c. The program pbuild reads this script, recognizes the

work library's main and object files, and concatenates the corresponding main and . c files, as shown

in Figure 26. From this point, pbuild calls plex for data transformation. If the specific path to the

build script is not specified by the user, pbuild can determine it by getting the UNIX environment

variables VHDLLIBIOOT and LOGIAME, which in this case would return /home/iinter/shiplib and

tbreeden, respectively.' This works as long as models are compiled and model generated in the

user's work directory, otherwise the user may have to specify the complete path to the build script

on the command line when invoking pbuild.

After extracting and concatenating the correct files, pbuild calls plex via the operating

system, also shown in Figure 26. The plex program was created using C and a UNIX program

1 The path /hoa,/inter/shiplib is the explicit path on lovelace in the VLSI lab. A logically equivalent path is
/uur/vhdl/shiplib, which works on any machine in the VLSI lab.

40

lovelace.-/vhdl/etdff>mg '-debug=cknd nand.gate(simple)'
Object-file /home/inter/shiplib/tbreeden/FN23067.o
H file /home/inter/shiplib/tbreeden/FN23068
C file /home/inter/shiplib/tbreeden/FN23069.c
Standard VHDL 1076 Support Environment Version 2.1 - I September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.'/vhdl/etdff>mg '-debug=cknd three-input.nand.gate(simple)'
Object-file /home/inter/shiplib/tbreeden/FN23077.o
H file /home/inter/shiplib/tbreeden/FN23078
C file /home/inter/shiplib/tbreeden/FN23079.c
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.-/vhdl/etdff>mg '-debug=cknd etdff(structutral)'
Object-file /home/inter/shiplib/tbreeden/FN23289.o
H file /home/inter/shiplib/tbreeden/FN23290
C file /home/inter/shiplib/tbreeden/FN23291.c
Standard VHDL 1076 Support Environment Version 2.1 - I Septem1'er 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.-/vhdl/etdff>mg '-debug=cknd etdfl-test-bench(structural)'
Object-file /home/inter/shiplib/tbreeden/FN23299.o
H file /home/inter/shiplib/tbreeden/F123300
C file /home/inter/shiplib/tbreeden/FN23301.c
Standard VHDL 1076 Support Environment Version 2.1 - I September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace. /vhdl/etdff>mg '-debug=cknd -top etdfft.config'
Object-file : /home/inter/shiplib/tbreeden/FN23304.o
H file : /home/inter/shiplib/tbreeden/F123305
C file : /home/inter/shiplib/tbreeden/F123306.c
Standard VHDL 1076 Support Environment Version 2.1 - I September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace. /vhdl/etdff>build '-debug=cknd -replace -ker=etdff etdfftconfig'
Kernel com file is /home/inter/shiplib/tbreeden/F123309
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Figure 24. Example VHDL Model-generate And Build Session for an Edge-triggered D Flip-Flop

41

V /bin/csh
if ($?VHDL-.LIBSIM = 0) then

if (! -e /usr/local/lib/libsizn.a) then
echo IDLIB > bld-.5854cn1.log
exit I

endif
setenv VHDL-.LIBSIM -isim

else if C! -e $VHDL-.LIBSIM) then
echo LIBSM > bld-5854cn1.log
exit 2

end if
cc -g -o /home/inter/shiplib/tbreeden/F123307\
/home/inter/shiplib/tbreeden/FN23311.c c
/home/inter/shiplib/tbreeden/F123304.o \
/hozne/inter/shiplib/tbreeden/F123077.o \
/home/inter/shiplib/tbreeden/F123067.o \
/home/inter/shiplib/tbreeden/FN23289.o \
/home/inter/shiplib/tbreeden/F123299.o \
/usr/vhdl/shiplib/std/FN240.o \
/usr/vhdl/shiplib/std/F1236.o \
/usr/vhdl/shiplib/std/F1225.o \
/usr/vhdl/shiplib/std/FN25 .0
$VHDL..LIBSIM -lcuxses -iterulib -Jan -lc >* bld-6.854cn . log
exit $status

Figure 25. Example Compilation Script Generated During Intermetrics' Build Phase

lovelace.-/vhdl/etdtt> pbuild FN23309 etdff.c
cp /home/inter/shiplib/tbreeden/F123306. c big..etdff .c
cat /home/inter/shiplib/tbreeden/F123079 . >>» big-.etdf . c
cat /home/ inter/shiplib/tbreeden/F123069. c >> big-.etdff .c
cat /hoin./inter/shiplib/tbreeden/F123291.c. >>» big..etdii. c
cat /home/inter/shiplib/tbreeden/FN23301 .c >> big..etdff. c
cat /home/inter/shiplib/tbreeden/F123311 .c >> big-..tdff .c
p1.1 < big...tdff.c > *tdff.c
Transformation in progress...

Figure 26. Result of Reading Compilation Script by pbuild

42

stack.c
FN23306.c
FN23079.c
FN23069.c

3FN23301.c .plex routines.cFN31 Lc
Sbig-!etdff.c

FN23309 pbuild.c plex.l
(build script)

etdff.c

Figure 27. Relationships of the Postprocessor Files

called lox. Lex reads a specification file containing UNIX regular expressions and C routines that

are associated with the regular expressions. When lex reads the file, character patterns are matched

by the rules of the specified regular expressions, then C routines are called that manipulate the

input file. For more information on lex, see (23).

Figure 27 shows the necessary files and relationships among them for the complete postpro-

cessor. The files relate to the edge-triggered D flip-flop examples of Figures 24, 25, and 26. The user

only has to invoke pbuild, which controls the transformation process. The files plex-routines. c

and stack. c are used by plex to manipulate the data once a regular expression has been recognized.

4.2.1 Transformation Steps. Pbuild transforms the Intermetrics' compiler-generated . c files

into a single . c file that, along with the associated header files, can be transferred to the iPSC/2

43

or iPSC/860 and run with VSIM. The following steps are taken to transform the intermediate C

code :2

1. The intermediate C code representing the VHDL configuration file is brought in first, and it

contains all the necessary #include directives. 3 Therefore, all #include directives after this

file are removed.

2. All lines containing #include fn26 or #include F126 are deleted. The necessary header

information for VSIM simulations is combined in vs im. h, which is already on the hypercube.4

3. All remaining #include directives are changed to the proper path. For example, if the path

was /home/inter/shiplib/tbreeden/F12858, it is changed to F12858.

4. All lines that contain "{trace" are changed to "{", i.e., "trace" to the end of line is deleted.

VSIM does not support tracing capabilities.

5. Each occurrence of if (trceqp) { ... } is deleted. These if statements contain code used

with Intermetrics simulator when it's in the "trace" mode.

6. To complete the removal of trace-related statements, every line containing the strings "trace"

or "TRAREC" is deleted.

7. The last function call from the main routine is ZSxxxxxx (where xxxxxx can be any series of

numbers and letters). The statement "cv = init.cvo;" is inserted before the first line in

this function. This new function call (init-cvo) is used to perform initialization functions

for the parallel simulator. In the third line of the same function the statement ".ire-it();"

is added. This routine starts the simulation.

2 For examples of how steps 1 through 10 are implemented, see Figures 4.4 through 4.17 of Comeau's thesis (10).
3 This is not true for structural models created hierarchically with a number of configuration descriptions. For such

models, the user must add the include directives to the ckt. c file. The files to include can be found by examining
the big-ckt. c file, or the appropriate . c files reported during the model generate phase. For more information, refer
to the User's Guide.

4Previously, vsia.h was simutl.h, which is what Intermetrics uses. The header files are different, therefore the
filenames were changed to avoid confusion.

44

8. The maino) routine has six subroutine calls. The four in the middle are deleted. These

functions are either not supported by the current VHDL subset, or have been replaced by

initcv() and simrito) above.

9. The name "main()" is changed to "vhdlzmaino." With VSIM, the main() routine is found

in the file vsim.c, which calls vhdl-maino) if the simulation is run sequentially. If the

simulation is run in parallel, the address of a startup() routine is passed as the starting

address of each LP. From there, startup() calls vhdljmain() in the intermediate C code.

10. For getting output in the parallel environment, the name of each signal must be added to

the signal structure after it is instantiated. For every mksig() function call, mksig() either

returns a scalar or bit vector value, depending on the type of signal.

"* If mksigo) is assigned to a variable such as (*cd) .Zxxxxxxx, it is a scalar assignment.

On the line below the mksig string, "(*cd).PAkR1 -> name = ,(PARII2);" is added

where PARMI is the Zxxxxxxx string to which mksig is being assigned. PARtI2 is the first

parameter that appears in the m-signal subroutine call that is six lines below.

"* If mksig() is not assigned to a scalar, then it's a bit vector assignment. Four lines

above these assignments, the statement "lastsig = sigarr + JlUM1 - 3u12;" is found,

where Jul]1 and NUl12 are integer values. Add "loop-counter = JlUI - JUl12;" below

that line. Then, after the line with the mksig string, the following statements are added:

temp-name = (char*)calloc(sizeof(PARM1) + 5, sizeof(char));

sprintf(temp.name, "'%s(VUd)", PARMl, loopcounter--);

(*(sigarr - 1)) -> name = temp-name;

where PARM1 is a string which appear 7 lines below as Z30000xxx. xxxxxzxxxxx .

45

11. Needless function calls are deleted. This was recommended-but not implemented-by

Comeau since his data transformations were done by hand. Instead of deleting the calls,

he wrote "dummy" functions. The following function calls are not required and are deleted:

"* close-sigdict()

"* m.inttype()

"* mrereal-type()

"* re-real-type()

"* m-signal()

"* pop()

"* push()

"* read.input()

"* rmtrrec()

"* rptstats()

"* rpterr()

"* Start._NonarrayComp ()

"* sched()

"* timer()

"* tpop()

12. Every behavior instance's "function behavior" is modified to report it's entity/architecture

name if MAPPING is defined in VSIM and the boolean variable mapping is still true. Each

of these function declarations is of the form Zxxxxxxx.xxxx(bi). Inside the function, after

local declarations, put the following:

#ifdef MAPPING
if (mapping)

printfO (Y.s\n", Zxxxxxxx_xzxxxtrcbck);
#endif

This step is also new, and an example is shown before and after in Appendix F.

46

vs [\tJ*
comment (\/*) ['\nJ*\n
include #{ws}include [\nJ *\n
include-fn26 #{vs}include{ws}\" [F] E[Nn]26\"{vs}\n
trace \{{Vs}trace [J\n]*\n
iftrceqp if{vs}\ ({vs}trceqp{ws}\) {vs}
trc-or-trarec [-\nJ * ((trace) I (TRAREC)) [\nJ *\n
main main{ws}\ ({s}\){s}1[";
Z1_call Z1([0-9J I [A-Z])*{,s}\({,s}\){ws};
ZSfunction ZS([0-9S I [A-Z])*{v}\({v}\){vs} [";]
mksig.a \(*cd\) ['\nj*mksig
mksig-b \n{ws}lastsig{ws}=
exec \nZ([0-9) I [A-Z])* [0-9)]*{ws}\(bi\)

Figure 28. Regular Expressions Required to Identify Data to be Transformed

4.2.2 Lex Descriptions of the Transformation Steps. As each regular expression is matched

in lex, the lex macros ECHO, input(0, output 0, and unput 0 are used in conjunction with a

character stack to manipulate the source code according to the rules above. The plex.1 file

contains the lex description of these rules. Figure 28 shows the regular expressions and Figure 29

shows function calls used in the lex description to translate the data. These two Figures make

up plex.1. For example, the definitions of Figure 28 show whitespace (ws) to be zero or more

blank spaces or tabs; a comment is recognized by a * to the end of line (taking advantage of the

intermediate C code's one-line comments); and an include directive is defined to be a pound sign,

followed by white space, followed by the word include, to the end of line; etc. Then, the rules

in Figure 29 use these definitions to recognize parts of the code that require modification and to

implement those modifications.

The twelve steps of the postprocessor are accomplished in Figure 29 as follows:

1. Step 1. The function check-include() is called to remove the unnecessary directives.

2. Step 2. The #include fn26 directives are deleted by not echoing them to the output file.

47

(comment) f ljneno++; /*assumes comments on one line *
numcomments++; /* count the comments */
ECHO; /* echo comment to output *

{include-.fn26} lineno++; /* do nothing, i.e., delete line *
output('\n'); /* output a newline */
num-.inc-.del++; /* count deleted #include fn26 *

(include) check-.includeo; /* evaluate and modify include directives *

{trace} fix-.traceo); /* {trace ... to f... *

{if-trceqp} { del-if-.trceqp0;) /* delete if Ctrceqp){ ..)} structures *
{trc-.or-.trarec} { lineno++; /* do nothing, i.e., delete line *

num..trc-.or-.trarec++;

{inain} f doj-iain(); I /* adjust main function *
{ZI-.call} f /* do nothing if in main, i.e., don't ECHO *

if (!found-main) ECHO;
else ZI-calls-.del++;

{Z-.function) f do-.Z5..functiono;) /* modify Z~xxzx() functions *
{mksig-.a) f do-.mksig-.ao; I 1* modify bit mksig() function calls *
{mksig..b} (do-.mksig-.bO; /* modify bit vector .ksig calls *

(exec) { add-.mappingo; I 1* add #ifdef MAPPING directive *
close-.sigdictfws}\((del-.fn-.callO); I /* delete function calls... *
m..int..type~vs}\({ del-.fn-.call(); I
m-.real-.type~ws}\(f del-.fn-.callC);)
m-.signal~vs}\(f del-fn-.call(); I
pop~vs}\(f del-.fn..callC); I
pushfirs}\({del-fn-.callC); }
read-.input~vs}\C f del-fn-.call(); I
rmtrrecfws}\({del-.fn...call(); I
rptstatsfvs}\(f del-.fn-.ca3llO;)
rpterrfwsl\((del-fn-.callO; I
Sta~rt-N.onarray-.Compfvs}\(f del-fn-.call(); I
sched~ws}\(f del-.fn-.callC);)
timer~ws}\((del-.fn-.call();)
tpop{,s}\(f del-.fn-.callC);}

\n{ lineno++;
ECHO;

{ECHO;}

Figure 29. Function Calls and Actions Defined for Each Regular Expression

48

3. Step 3. The paths of all remaining include directives are modified in check-include).

4. Step 4. {trace... is changed to {... by calling the fiix.trace() function.

5. Step 5. Occurrences of if (trceqp) {... } are deleted in the del-ifttrceqpC) routine.

6. Step 6. Lines containing trace and TRAREC are deleted by not echoing them to the output
file.

7. Step 7. The ZSxxxxxx() function is modified in doZS-.functiono.

8. Steps 8 and 9. The main function is modified by do-maino.

9. Step 10. Scalar signals are modified in do-mksig.ao, and bit vector signals are modified in
do-mksig-b().

10. Step 11. All unnecessary function calls are removed by calling del-fn-call(.

11. Step 12. Reporting of their entity/architecture name is added to behavior functions in
add.mapping C).

Finally, when the intermediate C code has been completely transformed, a report is generated,

such as shown in Figure 30.

4.3 Interfacing VSIM with SPECTRUM.

SPECTRUM provides support for running concurrent processes on the Intel iPSC/2 and

iPSC/860 Hypercubes. For VSIM, the concurrent processes each run the VHDiU simulation cycle

as described in Chapter 3. The behaviors are partitioned among the processes and interprocess

communication is accomplished via calls to SPECTRUM.

4.3.1 Main SPECTRUM Functions. All functions discussed in this section are listed in

Appendix G.

4.3.1.1 Initialization. Prior to running a parallel simulation using SPECTRUM, the

number of logical processes is specified in a header file. When the simulation begins, a call to

lp-level-.init () is made to establish the following:

"* The LP relationships.

"* The address of the starting procedure for each LP.

49

Approx lines: 2710
Comments: 5
#include directives modified: 5
#include directives removed: 13
{trace... changed to {... : 28
if(trceqp) tests removed: 35
"trace" or "TRAREC" lines removed: 223
Zlxxxxxxo) calls removed: 4
ZUxxxxxxo) functions modified: I
Scalar "mksig" assignments modified: 18
Bit vector "mksig" assignments modified: 0
#ifdef MAPPING added: 14

Other function calls removed:

close.sigdicto: 1
mJint.typeO: 0
m..real.type C): I
pop(): 21
pushO: 21
read-inputo: 1
rmtrrec(): 0
rptatatso: I
rpterro: 23
Start _NonarrayCompo: 0
schedo: 0

timero: 1
tpop(): 31

Figure 30. Example Postprocessor Report

50

e The addresses of any filters used by all LPs.

LP relationships are specified by the user in a ip. arcs file. The specifications for this file are

found in the SPECTRUM user's guide (16) and in the AFIT Parallel VHDL user's guide (4).

The function vspec..init() builds a table of function pointers for SPECTRUM. Each func-

tion pointer represents the starting code for the simulation on each LP. For VSIM, all LPs start

with the routine startup(). Therefore, every entry in the array functions 0 is loaded with the

address of startupo. Finally, a call is made to SPECTRUM's lp.level-init(, where SPEC-

TRUM initializes and each LP calls startup). In turn, startup() calls the intermediate C codes

vhdl-main(), where the circuit to be simulated is configured, and the simulation begins on each

LP.

4.3.1.2 Sending Signal Changes. When VSIM identifies a signal change that is re-

quired by another LP, it uses a function calles send-signa.l to build an event and call SPEC-

TRUM's lp-postoevent (). SPECTRUM sends the event to the specified LP after the send filter

performs the protocol-necessary functions, as discussed in the filter section.

4.3.1.3 Receiving Signal Changes. An LP receives a signal by making a call to SPEC-

TRUM's lp.get -event(0. The event is then made into a signal record and posted in the active

list by a function called receive.signa.l(). If a null-pointer is returned from lp-get.event),

this indicates that no event was ready to return and the local LP can safely execute without an

event from another LP. This determination is made by the receive filter.

4.3.1.4 Clock Management. VSIM and SPECTRUM each have local clocks for every

LP-both implemented as an integer. When an LP updates the VSIM clock, it passes this time to

SPECTRUM's lp-advance-timeO to keep the clocks synchronized.5

5The SPECTRUM clock is synchronized with the VSIM clock in each LP. This does not mean that every LP has
the same time-only that the VSIM clock and the SPECTRUM clock on each LP has the same time. The LPs run
asynchronously by the rules of the null-message protocol.

51

4.3.2 Implementation of SPECTRUM Filters for VSIM. The filters are used to implement

the null-message protocol for parallel simulations. The theory behind this protocol is discussed in

Chapters 2 and 3. The filters used by VSIM are based on an existing set of filters called chanclocks,

established at AFIT. The receive filter is modified for VSIM to take into consideration the two event

queues-SPECTRUM's input event list and VSIM's active list.

Channel times are introduced to track the safe time and the output send times. As discussed

in Chapter 3, safe time is defined as the minimum input channel time of all input arcs. Output

channel times are tracked to avoid sending null messages when they are not necessary.6

4.3.2.1 The Initialization Filter. When VSIM calls lp.init(), an initialization filter

is used to instantiate and initialize channel times for the input and output arcs defined in the

lp. arcs file. Also, a null message is sent to every downstream LP with a time stamp of t LP.DELAY.

4.3.2.2 The Send Filter. When an LP sends another LP a signal, null-post-filter()

sends a null message to every other downstream LP with the same time stamp. Also, the channel

time for each output arc is updated.

4.3.2.3 The Receive Filter. The receive filter, nullgetfltro, is used to get events

from upstream LPs. It determines if the local LP is able to prooceed, i.e., at least one message

has been received from each upstream LP and the time of the next event in SPECTRUM's queue

is less than the safe time. If so, the event is valid (no event will be received with an earlier time

stamp) and returned to VSIM.'

If the LP cannot return a message, it "peeks" at VSIM's active list to get the next event time.

If this time is less than the safe time, the filter returns, causing a NULL pointer to be returned

'Since null messages are only used to avoid deadlock, if a message has been sent to another LP at time t, there
is no need to (possibly) send another null message to the same LP at time t.

TInput null messages are stripped out.

52

by lp.get-evento. When VSIM receives the NULL pointer, it proceeds without adding a new

record to the local active list.

If the receive filter cannot return a valid message and the next event time is greater than the

safe time, then the filter blocks after sending a null message to every downstream LP guaranteeing

a message is not sent any sooner. In this way, deadlock is avoided. The rule, as discussed in

Chapter 3, is an LP sends a null message to every downstream LP with a time stamp equal to

either VSIM's next event time or the sending LP's safe time plus output delay.

4.3.3 Termination. When an LP has completed the simulation, it builds a null message with

the maximum simulation time and sends it to all downstream nodes. Then it calls node-terminate,

which signals to the host that the LP's simulation has completed. Ideally, a terminate filter should

be used instead of relying on the application to create and send a null message and make a node-level

function call.'

$Such a filter now exists in the latest version of SPECTRUM. VSIM uses this new version, but it does not use a
terminate filter. Modification should be relatively straightforward and simple.

53

V. Results

5.1 Introduction.

In this chapter, the performance of several VHDL circuit simulations is discussed. First, three

small adders are presented: An 8-bit carry save adder, an 8-bit carry propagate adder, and an 8-bit

carry lookahead adder. Then, two larger circuits are simulated: A 16-bit bit/byte shifter and an

8 x 8 Wallace Tree multiplier with a 16-bit product.

With the exception of the 16-bit shifter, each circuit is compiled and run on both the iPSC/860

and the iPSC/2. Data is presented separately. The shifter produces a C code representation of

the configuration file that is too large to compile on the iPSC/2; therefore, only iPSC/860 data is

presented for the shifter. The largest circuit in terms of numbers of gates-the Wallace Tree-did

compile on the iPSC/2 due to the hierarchical circuit design and use of incremental configurations.

All one-LP simulations represent the entire circuit as a single process on one node. One-LP

simulations are the baseline for speedup calculations.

For performance measurements, each configuration is run 30 times and averaged. The total

time for one simulation is considered to be the maximum time of all concurrent processes. Unless

otherwise noted, all output is turned off and 20 input vectors or sets of vectors are applied to each

circuit, e.g., 20 pairs of vectors are applied to the multiplier, 20 vectors are applied to the shifter,

etc.

5.2 Program Validation.

Programs are validated by comparing them with Intermetrics' output. The process is as

follows:

1. Run the simulation using Intermetrics' simulator.

54

TIME --------------------------- SIGNAL NAMES--------------------------I

(ES) CIN X(7 DOWNTO 0) Y(7 DOWNTO 0) COUT ZW7 DOWNTO 0)

0 '03' "00000000" "00000000" '0' "00000000"

10 I"01010101" "101001100"
16 I"00011001"
21 "10010001"
24 "110000001"
30 I 1P' "10101010" "10110011" "10100001"

Figure 31. Sample Intermetrics Output for Carry Lookahead Adder

2. Generate an Intermetrics report. Example output for a portion of the carry lookahead adder

simulation is shown in Figure 31. The circuit adds two 8-bit vectors, X and Y, along with

a carry in, CIN (see the schematic on page 66). Figure 31 shows the values 01010101 and

01001100 are applied to the adder though X and Y respectively, while CIN remains a zero.

The sum, Z, is 10100001 at 30 ns; and the carry output, COUT, remains a zero. Also, X, Y,

and CIN are givea new values to begin another addition (whose result is not shown).

3. After filtering the intermediate C code through the postprocessor and linking with VSIM,

run the simulation in sequential mode under VSIM. An example of this output for the same

portion of the carry lookahead adder is shown in Figure 32. Note the output of VSIM shows

only the bits that have changed in each bit vector. For example, at 30 ns only bit 5 of Z

has changed (from a zero to a one). This output can be directly mapped to the output of

Figure 31.

4. Sort the output from the VSIM sequential run by time and signal name, respectively.1

5. Validate this output by comparing with the Intermetrics report.

'The output is already in time order; however, this sort organizes the signals while maintaining the time order.

55

10 us, X(O) from 0 to 1
10 us, X(2) from 0 to 1
10 us, X(4) from 0 to 1
10 us, X(6) from 0 to i
10 us, Y(2) from 0 to 1
10 us, Y(3) from 0 to I
10 us, Y(6) from 0 to 1
16 us, Z(O) from 0 to 1
16 us, Z(3) from 0 to 1
16 us, Z(4) from 0 to 1
21 us, Z(3) from I to 0
21 us, Z(7) from 0 to 1
30 us, CIN from 0 to 1
30 us, X(O) from 1 to 0
30 ns, X(1) from 0 to 1
30 us, X(2) from I to 0
30 us, X(3) from 0 to 1
30 ns, 1(4) from I to 0
30 us, X(5) from 0 to 1
30 us, X(6) from I to 0
30 us, X(7) from 0 to 1
30 us, Y(O) from 0 to 1
30 us, Y(1) from 0 to 1
30 us, Y(2) from I to 0
30 us, Y(3) from 1 to 0
30 ns, Y(4) from 0 to 1
30 us, Y(5) from 0 to 1
30 us, Y(6) from 1 to 0
30 us, Y(7) from 0 to 1
30 us, Z(5) from 0 to 1

Figure 32. Sample VSIM Output for Carry Lookahead Adder

56

6. Run the simulation in any parallel configuration, concatenate the LP output files, sort them

by time and signal name, and use dif f to compare them with the validated output.

Input test vectors for the adders are taken from Comeau (10:5-15). His test vector patterns

are designed to verify the individual logic gates each act correctly for all possible inputs. For

the shifter, patterns are chosen to verify that logic ls and Os shift left or right one or eight bits,

depending on the input control signals. Also, Os shifted in (one or eight bits) are verified. The

multiplier is tested to verify limits and various intermediate values. For example, input pairs (0,

0), (0, number), (number, 0), (0, max), (max, 0), (number, max), and (max, number), and several

combinations of (number, number) are tested and verified.

5.3 Circuit Partitioning.

No attempt is made to find the optimal circuit partitions; however, the absence or presence

of speedup is discussed for each simulation. In general, larger or more complex simulations exhibit

better speedup. Even though the presence of feedback can significantly inhibit performance in the

null message protocol, very large circuits can still achieve speedup through parallel simulation.

The full adders that make up the carry save and carry propagate adders are partitioned sym-

metrically. For eight-LP simulations, each full adder is assigned to an LP, for four-LP simulations,

two full adders are assigned to each LP, etc.

The partitioning for the carry lookahead adder is from Comeau's research. This adder is

partitioned to avoid imposing feedback among LPs and to reduce the number of behaviors on

successive downstream LPs (10:5-2).

Due to the large number of behaviors, the 16-bit shifter and the multiplier are simulated with a

uniform random distribution of behaviors to LPs. Even though these circuits are combinational and

"feedforward," such a distribution imposes feedback among the LPs. The results of this research

57

indicate that these larger circuits can be correctly simulated; therefore, more aggressive partitioning

strategies can be investigated in the future.

5.4 Explanation of Charts.

For each chart, the performance of the simulation time and the total LP time are presented.

The difference is that the simulation time represents the total time for an LP to execute the core

simulation algorithm, as presented in Figure 21 on page 36. The LP time represents the total

time an LP executes, i.e., overhead is included for SPECTRUM initialization, behavior and signal

instantiation, and close-out.

All data is summarized in Appendix E.

5.5 Circuit Simulations.

5.5.1 Carry Save Adder. The 8-bit carry save adder, shown in Figure 33, is composed of

eight independent full adders. The simulation has a total of 64 behaviors. Circuit partitioning is

straightforward due to the lack of communication among the full adders.

Figure 34 shows the performance and speedup of the carry save adder for the iPSC/2. Note

that the simulation loop exhibits superlinear speedup, i.e., speedup increases greater than the num-

ber of LPs. This is due to the significantly reduced search and post times in each active list, as

well as the reduced number of behaviors executing on each LP.

In parallel simulations, each LP maintains an active list that contains signals that only affect

behaviors belonging to that LP. The total number of behavior executions, and therefore the total

number of signal records generated, is dynamic. If there are m behaviors and n signal records posted

in one circuit simulation, a sequential simulation may be bound by 0(n 2m) since each signal change

58

X(7) X(M) X(5) X(4) X(3) X(2) X(1) X(O)

Y(7) Y(6) Y(5) Y(4) Y(3) Y(2) Y(1) Y(O)

Z(7) Z(Z(5) Z(4) Z(3) Z(2) Z(1) Z(O)

C(7 CO(6) C (5) C(4) 03) () () ()

S(7) S(6) S(5) S(4) S(3) S(2) S(1) S(0)

Figure 33. Schematic Diagram of the 8-bit Carry Save Adder (10)

(n) corresponds to up to m behaviors executing2 , which then posts the resulting signal into the

active record list in O(n) time.

If this simulation is now divided evenly between two LPs that require no communication

between them (trivially parallel), then one LP now has m' = m/2 behaviors, and the total number

of signal records generated and posted can be estimated to be n' = n/2. The overall execution is

then 0((n')2 /M') = O(n 2 m/8). This means that the execution time for a trivially parallel circuit

evenly distributed between two nodes can execute as much as eight times faster as a sequential

simulation of the same circuit. Likewise, trivially parallel, balanced circuits partitioned among

four and eight nodes can execute 64 and 512 times faster, respectively. This, of course, is a very

high bound on speedup estimations because the number of generated signals is estimated, and the

2 This corresponds to one time through the simulation loop. This is a very high estimation, as one signal change
rarely directly affects every component of a circuit.

59

number of behaviors scheduled for execution due to one signal change is almost always significantly

less than the total number of behaviors.

Also Figure 34 shows the overall LP time for the carry save adder was never below 800ms.

Therefore, although each simulation loop was improving in performance, the overall LP time is

bounded by SPECTRUM's initialization and close-out functions. As other simulations show, this

limitation disappears as circuit sizes and complexities increase.

For the iPSC/860, Figure 35 shows the computation times are significantly reduced as the

number of LPs is increased. Also, the total execution time is less for SPECTRUM overhead,

however, it increases with number of LPs due to increased contention for common resources, like

input files and node-to-host synchronization.

5.5.2 Carry Propagate Adder. With the 8-bit carry propagate adder of Figure 36, the carry

output of each adder is "propagated" to the next full adder. This introduces communication among

the LPs. Otherwise, partitioning is the same as that of the carry save adder. Adjacent full adders

are assigned to the same LP in order to reduce LP communications. The simulation of the carry

propagate adder consists of 57 behaviors.

For the iPSC/2, Figure 37 shows a maximum simulation-loop speedup of about 2.3 for either

two or four LP configurations. The total LP time shows a speedup of about 1.5 for four LPs. At

eight LPs, the communications overhead overcomes the computation, and no speedup is obtained.

For the iPSC/860 simulations of Figure 38, the simulation time shows a modest 1.2 speedup on

two LPs; however, the overall LP time shows no speedup whatsoever. As is the case with the

carry save adder, the carry propagate adder is too small to show much promise of speedup on the

iPSC/860-regardless of the addition of LP communication requirements. 3

3 "Too small" can mean either a small number of components (behaviors), or a small number of test vectors, since
each contributes to greater active lists and numbers of behaviors scheduled. Therefore, if the number of input vectors
(test vectors) were increased sufficiently, the same carry propagate adder may no longer be "too small."

60

Ex.o.tl ,.im(me) Carry Save Adder
24,00 iPSC/2, 1 LP/Node
2200. Legend

2000. Simulation Time

1800- Total LP Time

1600.

1400-

1200-
1000-

200-

1 2 3 4 5 6 7 8

Number of LPs

Reatve.peup Carry Save Adder
24 iPSC/2 1 LP/Node
22 Legend

20- -Simulation Time

18- - - Total LP Time
16- L.. near Speedup

14-

12-

10-

8

6

4

"2 , --
0

4

Number of LPs

Figure 34. Performance of the Carry Save Adder on the iPSC/2

61

Time(,m) Carry Save Adder
11oo01 i860, 1 LP/Node
1000 Legend
900- 900- M Simulation rimwe

800- Total LP Time

700-

600-

500,

400-

300-E

200M

103 4 5 6 7 8

Number of LPs

Speeu Carry Save Adder
40- i860 1 LP/Node

Legend

SSimulation Tim.

30- - Total LP Time

25 .----- Unear Speedup

20.

15-

10-

10 --------------

5--------- I -----

0
1 2 3 4 5 6 7 8

Number of LPI

Figure 35. Performance of the Carry Save Adder on the iPSC/860

62

X(7) Y(7) X(6) Y(6) X(5) Y(5) X(4) Y(4) X(3) Y(3) X(2) Y(2) X(1) Y(1) X(O) Y(O)

full full full full full full full full CIN

COUT Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z(O)

X(7) Y(7) X(6) Y(6) X(5) Y(5) X(4) Y(4) X(3) Y(3) X(2) Y(2) X(1) Y(1) X(O) Y(O)

mp"
-ý7P-CIN

COUT Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z(O)

Figure 36. Schematic Diagram of the 8-bit Carry Propagate Adder (10)

5.5.3 Carry Lookahead Adder. The 8-bit carry lookahead adder is made of two 4-bit carry

lookahead adders, as shown in Figure 39. The simulation consists of 77 behaviors. For two-LP

simulations, each 4-bit adder is assigned an LP. Four- and eight-LP simulations are partitioned to

avoid imposing feedback, as well as to "front load" upstream LPs with more behaviors, as shown

in Figures 40 and 41. Partitioning is shown for only the lower 4-bit adder; however it is the same

for the upper 4-bit adder.

For carry lookahead adder simulations on the iPSC/2, shown in Figure 42, all multi-LP

simulations exhibited speedup over the one-LP simulation. The best speedup for this circuit is

2.5, which occurs for the four-LP simulations. This circuit is "larger" than the two previous

adders, and the overall LP time more closely follows the trends of the "inner" simulation times. As

circuits continue to grow, this becomes more and more apparent. On the iPSC/860, however, the

computation time of the node processors still overcomes the benefits of partitioning the circuit, as

shown in Figure 43.

63

Time(ma) Carry Propagate Adder
150 iPSC/2, 1 LP/Node
1400- Legend

13007 Simulation Time

1200- Total LP Time

1100

1000-

900-

800-

700-

600-

400-

3001 1 2 3 4 5 6 7 8

Number of LPs

e Carry Propogate Adder
3.4- iPSC/2 1 LP/Node
3.2 Legend

3-
Simulation Time2.8/

- -2 Total LP Time
2.6-

2.4- .. Unear Speedup
2.2-186 ;;
2.-

1.6-

1

0.8 r I--
1 2 3 4 5 6 7 8

Number of LPs

Figure 37. Performance of the Carry Propagate Adder on the iPSC/2

64

Time(ms) Carry Propagate Adder
1000 i860, 1 LP/Node
900 Legend

800- Simulaton Time

700 Total LP Time

700M

600.

500.

100 t

Number of LPs

S~Carry Propagate Adder
24 i860 1 LP/Node

2.2. Legend

2 -, Simulation lime
1.8,

: ~- -- Total LP .Time
1.6I

20.4

0.2- •

0.2-

1 2 3 4 5 6 7 8

Number of LPs

Figure 38. Performance of the Carry Propagate Adder on the iPSC/860

65

Y3X() Y(2) X(2) Y(1) X(1) Y(0) X(0)

CIN

a) Z(3) Z(2) Z(1) Z(0)

GOUT 4-bit G-i IN
carry lookahead carry lookahead

adder adder

b) Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z{O)

Figure 39. Schematic Diagram of the 8-bit Carry Loakahead Adder (10)

66

Y(3) X(3) Y(2) X(2) Y(I) X(1) RXO

Z(3) Z(2) Z(1) Z(O)

Nodel1 NodeO0

Figure 40. Four-LP Partition of the Carry Lookahead Adder (Lower Four Bits Shown)

Y(3) X(3) : Y(2) X(2) : Y(1) X(1) RXO

.. . ~ ~ - - - -I. . . .I. .

Node 3 ~Node 2 NodelI NodeO0

Figure 41. Eight-LP Partition of the Carry Lookahead Adder (lower Four Bits Shown)

67

Time(..) Carry Lookahead Adder
2300 iPSC/2, 1 LP/Node

2100 Legend

19W Simulation Time
1900-

Total LP Time

1700-

1500-

1300- M

1100.O.O- v, •w•", , ,., i

500 w" 1 1 ý

1 2 3 4 5 6 7 8

Number of LPS

S•edup Carry Lookahead Adder
3.4- iiPSC/2 1 LP/Node
3.2- Legend

- Simulation Time
2.8-

2.6- - Total LP Time

2.4- ",,,.... UnearSpeedup

2.2-

2-

1.8-

1.2-

0.8

Number of LPs

Figure 42. Performance of the Carry Lookahead Adder on the iPSC/2

68

Time (me) Carry Lookahead Adder
1000l i860, 1 LP/Node

900- Legend
M Simulation Time

800-R
INON •Total LP rime

700-

600-

500.

100. St

100
1 2 3 4 5 6 7 8

Number of LPs

4pee.up Carry Lookahead Adder
2.3- i860 1 LP/Node
2.1 - Legend

1.9 ' " Simulation Time

1.7- , -- Total LID Time

1.5- Linear Speedup

1.3- "

1.1 ,

0.9 \

0.7- \

0.5-

0.3-

0.1 - , 3 ,6 , 8

Number of LP*

v'igure 43. Performance of the Carry Lookahead Adder on the iPSC/860

69

5.5.4 Shifter. The .16-bit shifter shifts a 16-bit word either one or eight bits right or left

depending on the control inputs. The schematic diagram is shown in Figure 44. Simulation of

this shifter contains 309 behaviors. Therefore, partitioning is accomplished via a uniform random

distribution of behaviors-to-LPs. This means feedback is artificially introduced due to LP com-

munication. Therefore, performance in parallel configurations is not very promising, as shown in

Figure 45. It does demonstrate that larger simulations can be correctly simulated in parallel on

the iPSC/860.

5.5.5 Multiplier. The Wallace Tree Multiplier is the largest circuit tested. It contains 1050

behaviors. Schematic diagrams and a description of the hierarchical design are included in Ap-

pendix D. Behavior partitioning is once again random. Fortunately, the multiplier was created

with a hierarchical set of components and configuration descriptions, and the corresponding C code

is not too large for either the iPSC/2 or the iPSC/860.

Figures 46 and 47 show multiplier performance on the iPSC/2 and iPSC/860, respectively.

Both hypercubes demonstrate increasing speedup as the circuit is simulated on two and then four

LPs. This is encouraging and somewhat surprising since the random partitioning again imposes

feedback among LPs. Because of these results, greater performance improvements can be expected

for very large circuits if partitioning algorithms can be generated to avoid excess LP feedback.

5.6 Performance vs. Test Vector Quantity.

The carry lookahead adder is now modified to apply 64 pairs of input vectors instead of 20.

This corresponds to a larger initial active list, more active records, and therefore more executions

of behaviors. Figure 48 shows the corresponding speedup increases as the number of LPs increase.

The maximum -Peedup here is 6.69 for eight LPs. For the iPSC/860 of Figure 49, speedup also

improves, but the maximum is 3.75 for four LPs. These trends were similar for the other circuits.

70

Figure 44. Schematic diagram of the 16-bit shifter

71

Time (ms Shifter
4000- i860, ILP/Node

3500-
Legend

] Simulation Time

3000- m Total LP Time

2500-

2000-

1500-

1000-

0
1 2 3 4 5 6 7 8

Number of LPs

Speedup Shifter
2.4 i860 1LP/Node
2.2 Legend

2- -Simulation Time
1.8'

--- Total LP Time
1.6

----- ----Linear Speedup

1.a

1. /

0.6
0.4

0.6
0.4

0.
1 2 3 4 5 6 7 S

Number of LPs

Figure 45. Performance of the 16-bit Shifter on the iPSC/860

72

Time,(m) Wallace Tree Multiplier
110o000 iPSC/2, 1 LP/Node
100000- Legend

90000 Simulation Time

80000 Total LP Time

70000-

60000-
60000-

50000-

30000.

m0000-- M

1 2 3 4 5 6 7 8

Number of 1-13

Speedup Wallace Tree Multiplier
6- iPSC/2 I1LP/Node

4.5- Legend

-- Simulaton Time
4-

4 Total LP Time
8.5- oO~-- e. Speedup

3.

2.5-

2-

1.5

1

0.5 0 7 li

Number of U's

Figure 46. Performance of the Wallace Tree Multiplier on the iPSC/2

73

Tie(m.) W allace Tree Multiplier
14000- i860, 1 LP/Node
13000- Legend

12000 Simulation Time12000

11000- Total LP Time

10000-

9000-

Number at LPs

Speedup Wallace Tree Multiplier
22- i860 1 LP/Node
2.1 - Legend

2- Sed- Simulation Time

1.9-
- - Total LP Time

---- Unear Speedup

1.6-

1.5-

1.4-

1.2-

0.9

Number of LPs

Figure 47. Performance of the Wallace Tree Multiplier on the iPSC/860

74

Time (me) Carry Lookahead Adder
1600- iPSC/2, I LP/Node, 64 Input Vectors
15000- Legend
14000-

13000 Sirnulai~on Time
13000-

12000- Total LP Time
11000
10000
9000
8000-
7000-
6000
5000
4000-
3000- /

11111111,M
2000-

1 2 3 4 5 6 7 8

Number of LPs

Speu Carry Lookahead Adder
10 iPSC/2, 1 LP/Node, 64 Input Vectors
9. Legend

8Simulation Time

7- -Total LP Tim
7-

S...Linear Speedup
6

5-

4-

3-

2-

1

0 1 2 3 4, 5 6 8
Number of LP*

Figure 48. Performance of the Carry Lookahead Adder with 64 Input Vectors Applied (iPSC/2)

75

Tie(m) Carry Lookahead Adder
M2o iPSC/860, 1 LP/Node, 64 Input Vectors
2800. Legend

26000 Simulation Time
2400- 2T0tal LP Time
2200i

2000-

1800-

1600,

1400 r

1200-

1000 R

800-

600-

400 1 2 3 4 5 6 7 8

Number of LP1

Speedu Carry Lookahead Adder
5 iPSC/860, 1 LP/Node, 64 Input Vectors

4.5 Legend

- Simulation Time
4,

"- - Total LP Time

3.5- ,.,"- - --'- --....- Unear Speedup

3-

1.5 2 4
1 2

Number of LP*

Figure 49. Performance of the Carry Lookahead Adder with 64 Input Vectors Applied (iPSC/860)

76

When VLSI designers test their circuits with a large number of input vectors, they are likely

to automate this procedure by creating test pattern generators in VHDL. This is not what is

simulated here. The setup for VSIM "hardwires" the input signals, through VHDL source code, at

the beginning of the simulation. In this way, the active list is loaded with all input signal changes

at the beginning of the simulation. With automatic test pattern generation, a behavior is created

to periodically generate an input signal change, according to the rules specified in the VHDL source

code. Therefore, these signal changes posted to the active list are done throughout the simulation,

and not all at the beginning. Automatic test pattern generation is not implemented in this research

effort.

5.7 Multitasking LPs on one Physical Processor.

The Intel 80836 processors of the iPSC/2 allow multiple processes. The carry lookahead adder

and wallace tree multiplier were simulated on one node with one, two, four, and eight LPs. Results

are shown in Figures 50 and 51, respectively. Note that speedups of slightly more than one are

achieved with two- and four-LP simulations. These speedups are even greater as the number of

input vectors are increased.

It has already been shown that one benefit of partitioning circuits is reduced active list search

and post time. Clearly in sequential simulations, performance could be improved if the active list

search and post time were reduced. This is inherently a part of the parallel simulation paradigm

for VSIM. Improving the sequential algorithm makes all parallel configurations run faster-and it

increases the challenge of achieving relative speedup through parallelization, as is the case with

using faster processors like those used in the iPSC/860.

77

Time(ms) Carry Lookahead Adder
4M -oo iPSC/2, LPs Run on 1 Node
4000- Legend

Simulation Time
3500-

!Total LP Time

3000,

2500a

2000.

5001 ,
I 2 3 4 5 6 7 8

Number of LPs

Speu Carry Lookahead Adder
2.3- iPSC/2, LPs Run on one Node
2.1 Legend

1.9 - Simulation Time

"1.7- - Total LP Time

---------U Linear Speedup

1.3-

0.9

0.7- -

0.5-

0.3

Number of IP.

Figure 50. Performance of the Carry Lookahead Adder with all LPs Run on One Node (iPSC/2)

78

Wallace Tree Multiplier
270000o iPSC/2, LPs Run on 1 Node
250000- Legend

230000- Simulation Time

210000 Total LP Time

190000-

170000-

150000-

130000-

110000-

90000

70000-

50000-
30000 , ,

1 2 3 4 5 6 7 8

Wallace Tree Multiplier
2.3- iPSC/2, LPs Run on 1 Node
2.1 Legend

1.9 - Simulation Time

1.7 - - Total LP Time

1.5- UnearSpeedup

0.9-

0.7-

0.5-

0.3-

0.1

Figure 51. Performance of the Wallace Tree Multiplier with all LPs Run on One Node (iPSC/2)

79

5.8 Performance with Output Enabled.

All reported performance data is wi~h output turned off, i.e., signal changes are not reported.

Unfortunately, VSIM either reports all signal changes or no signal changes. Commercial simulators,

like Intermetrics VHDL, allow the user to specify which signals to report.

With output enabled, each LP writes every signal change to an ip. out file. Since the hyper-

cube nodes share the file system with each other and the host, this means much greater simulation

time for operating system contention and file management. Execution time is significantly increased,

and file I/O overwhelms the benefits of parallelization.

80

VI. Conclusions/Recommendations.

6.1 Research Summary.

Many circuit designs are too complex to be simulated with VHDL in a reasonable amount

of time. In an effort to improve VHDL's performance, an environment is created to simulate

hierarchical structural VHDL circuits in parallel on Intel Hypercube architectures.

The output from Intermetrics VHDL compile and model generate phases is transformed into

code compatible with AFIT's parallel simulator. The simulator can run sequentially or in parallel

on the Intel iPSC/2 and iPSC/i860. Logic gates and system behaviors are partitioned among the

processors, and signal changes are shared via event messages.

The transformation and parallel simulation tools are demonstrated using three small adders:

an 8-bit carry save, an 8-bit carry propagate, and an 8-bit carry lookahead. Two larger circuits are

also demonstrated: a 16-bit bit/byte shifter and an 8x8 wallace tree multiplier.

No attempt is made to find optimal partitioning strategies; however, speedups are obtained

for some configurations.

6.2 Conclusions.

With the parallel VHDL simulator, much research can now be accomplished with respect

to partitioning algorithms, computation/communication balancing, etc. However, the following

general observations can be made about parallel simulations of structural VHDL simulations:

Large circuits have a better chance to exhibit speedup. Large circuits mean more behaviors.

More behaviors mean larger active lists, which contributes to increased computation on each

LP. However, a poor partition can inhibit speedup as larger active lists also correspond to

increased communications. If feedback is imposed among LPs, a great number of aull messages

are generated to avoid deadlock. Increasing communications reduces speedup.

81

"* Balancing computation and communication times is hardware dependent. The node proces-

sors of the iPSC/2 are Intel 80386 processors, while the iPSC/860 uses much faster i860

processors-which corresponds to less computation time. Therefore, a good circuit partition

on the iPSC/2 may not be as effective on the iPSC/860.

"* SPECTRUM overhead is not a factor in large circuit simulations. It was noted, however,

that for small simulations, the overhead initializing SPECTRUM reduced the performance

of the overall simulation. For larger circuit simulations, SPECTRUM overhead is essentially

constant regardless of circuit size or configuration.

"* Performance of all simulations can be improved if active list management were improved. One

reason for obtaining speedup was reduced active list search and post times due to partitioning

the behaviors, and implicitly, their output signals.

The most important conclusion is large structural VHDL circuits can be simulated and run

with speedup on the Intel hypercubes.

6.3 Recommendations for Further Research.

6.3.1 Parallel Simulation Recommendations. The interesting work to be done in the future

involves experimenting with the parallel simulation protocols and partitioning algorithms. Some

suggested areas of interest are

"* Try various simulation protocols. Since SPECTRUM is now the underlying testbed, a number

of existing filters can be examined for their compatibility with VSIM.

"* Create a Time Warp version of VSIM. Time Warp requires state-saving. The state of VSIM

is identified by the simulation clock, the active list, and the global address space for signal

values. If the address space were more efficiently "packed," then saving state would require

much less overhead. Currently, each signal value ('0' or '1') is inefficiently stored in a 32-bit

82

word in memory. Packing these values aids in memory reduction, but may inhibit future

enhancements to the VHDL subset-such as implementing signals as integers instead of bits,

etc.

"* Determine effective partitioning strategies. This is the subject of much research in industry

and academia. To this extent, AFIT has begun work on a VHDL graph tool that reads the

VSIM behavior numbers and relationships, and generates (among other things) behavior-to-

LP mapping files.

"* Run simulations on larger parallel processors. With the automation of intermediate C code

translation and circuit partitioning, much larger circuits can be simulated. Simulating on

larger parallel processors will aid in providing more concurrency and greater speedup.

6.3.2 Improving the Postprocessor. Currently, the postprocessor expects there to be one

configuration description for each simulation. If configurations are broken into multiple, hierarchical

descriptions, then the corresponding intermediate C code is significantly smaller. On page 95 of

Appendix B, two ways to use the postprocesscr on large VHDL circuits are discussed:

"* Run plex directly on each C code description generated in the model generate phase.

"* Reconstruct the VHDL circuit using hierarchical configuration descriptions.

If hierarchical configuration descriptions are used, then the user must identify the include files

by examining the intermediate code before it is filtered. Automation of this function should be

included as an expansion to the postprocessor.

6.3.3 Expanding the VHDL subset. The two most beneficial enhancements to the subset of

circuits that VSIM can simulate are resolution functions and wait statements.

With support of resolution functions, a vast number of existing structural VHDL circuit

designs can be acquired and tested. A suggested method for adding this to the subset is

83

1. Create a small circuit that uses a resolution function.

2. Extract the corresponding intermediate C code representation of the function.

3. Identify external data structures and function calls used in the code.

4. Determine if VSIM can support the intermediate representation.

5. If VSIM does not support the intermediate representation, design the necessary support

routines and/or data structures, using Intermetrics' simulator source code as a guide.

This process can also be used to implement automatic test pattern generation and multi-valued

logic.

The first step to simulating behavioral VHDL circuits is implementation of wait statements.

A suggested method for adding wait statements is

1. Create simple processes with wait, wait for, wait on, and wait until statements.

2. Extract the corresponding intermediate C code and identify the methods and data structures

as suggested for resolution functions.

3. Using Intermetrics' as a guide, build queues for waiting processes. If processes are allowed to

"wait on" events, then execution of events that satisfy the wait condition can schedule the

waiting processes (behaviors).

6.3.4 Other Recommendations.

6.3.4.1 Considerations for Generating Output. Change VSIM to report only the signal

changes specified by the user. When an Intermetrics report is generated, only the signals of interest

are reported, based on the user's specification in a "report control language" file. When VSIM

executes with output enabled, every signal change is recorded in each LP's output file (if the LP

"owns" the behavior that caused the signal change). Since the nodes of the Intel Hypercubes share

the same file system, this causes a significant decrease in performance when output is enabled.

84

It would be beneficial to specify only the signals of interest for two reasons. First, it is how

commercial simulators handle output, as in Intermetrics' case. Second, parallel performance with

output enabled will improve with the reduced file contention.

This can be accomplish a number of ways. For instance, Intermetrics' report control language

procedures could be studied and emulated in VSIM. A simpler approach would be to modify VSIM

to compare each signal name with a list of signals of interest. The list could be built from a user file

at the start of the simulation. If the changing signal is in the user-specified list, then the change is

recorded in the output file and its new signal value is updated in memory. Otherwise, the change

is not recorded in the output file; however, the new signal value is still updated in memory.

6.3.4.2 Design Method for VHDL Circuits. Design circuits hierarchically, using hier-

archical configuration files. Hierarchical configurations are better for two reasons. First, as already

discussed, the corresponding intermediate C code is more likely to compile on the hypercubes with-

out running out of memory. Second, hierarchical circuit descriptions (vs. large, flat descriptions)

provide insight into possible circuit partitionings by identifying groups of functionally related com-

ponents. For example, a multiplier that uses sets of adders could be partitioned by assigning the

components that make up each adder to the same LP.

85

Appendix A. Definitions

A.1 Discrete-Event Digital Simulation Definitions.

The following terms are used to discuss discrete-event digital simulation:

Component Any subsystem of a circuit that can be modeled as an entity, regardless of the level

of hierarchy. For example, an AND gate, an arithmetic/logic unit, etc.

Entity Any component in the system which requires representation in the model (2).

Event Any action that causes the simulation model to change from one state to another (15).

Typical events include the changing of any process's state variables, the arrival of a message

at a process, or the transmission of a message from one process to another.

Message State information transmitted among processes.

Model An abstract representation of a physical system (2). There may be a number of models

for a given system. For example, a digital circuit can be modeled by a gate-level schematic

diagram, a block diagram, a dataflow graph, etc.

Process The succession of states of an entity over time (26:136). A logical process (LP) is the

model's representation of a physical process (PP) in the system (7:198-199). It is common

to refer to an entity as a process, although, strictly speaking, there is a distinction in the

meanings.

State A collection of variables that describes the condition of an entity or system at any given

time (26:136).

System The real-world process to be modeled and simulated, e.g., an electronic circuit (2).

A.2 VHDL Definitions.

The following VHDL terms are used in this thesis:

86

Architectural Body The description of the internal behavior or structure of a design entity (10:2-

11). A structural description defines an architecture by what its subcomponents are and how

the subcomponents are connected to each other (22:107). A behavioral description is used at

the lowest level of decomposition and shows how the entity transforms inputs to outputs (10:2-

11). See Figure 52 for an example of the relationships among behavioral and structural circuit

descriptions.

Block A block may be used to define a subsystem of an architecture description (20). Blocks may

be nested, and they may run concurrently.

Component The building block of hardware description, at any level of hierarchy. For example,

an AND gate, a register, a chip, or a circuit board (22:18).

Design Entity The discrete system used to model a digital device. It defines the inputs and

outputs of a hardware design and performs a well-defined function (22:10). A design entity

may represent an entire system, a sub-system, a board, a chip, a macro-cell, a logic gate, or

any level of abstraction in between (10:2-11). A design entity consists of an entity declaration

and an architectural body (22:10).

Design Hierarchy The result of successive decomposition of a design entity into components. It

also binds those components to other design entities that may be decomposed in like manner.

Taken together they represent a complete design. Such a collection of design entities is called

a design hierarchy (10:2-12).

Entity Declaration The entity declaration defines the component's interface to the external en-

vironment; it specifies the ports of the entity in which data may flow in and out (22:18).

External Block The top-most block in a hierarchy. This block is the design entity itself, and it

defines the interface of the design entity to the external environment (10:2-12).

Inertial Delay Delay-type representing components which require the value on inputs to persist

for a given time before the component responds(22:71).

87

Model The elaboration of the design hierarchy in the VHDL simulation environment. The model

is executed to simulate the behavioral or structural design of the circuit under test (10:2-12).

Port A signal that appears in the interface list of an entity declaration (10:2-12). Also, a port

is a component's external interface, the point where data flows into and out of the compo-

nent (22:18).

Process A collection of operations applied to signals. The operations are sequential descriptions of

component behavior. Processes are said to run concurrently. Therefore, VHDL descriptions

can be thought of as a set of independent programs running in parallel (22:9).

Signal An object that holds a value and directly corresponds to some type of metal interconnection

within a circuit (10:2-12). Signals define the pathways among processes (22:9).

Transport Delay Delay-type representing an output which always occurs regardless of the time

duration of the input signals (22:71).

Note that some terms, like entity, model, and process have different meanings, depending on the

context-classical simulation or VHDL. The reader is cautioned to interpret each term with respect

to its context.

88

Controller Shift Reg Shift Reg ALU

Behavioral Structural Structural Structural

Be]avioral Behavioral Adder Behavioral

Logic Gama

Figure 52. Example of the Relationships Among Behavioral and Structural Circuit Descriptions
in a Mixed-Level Design

89

Appendix B. AFIT Parallel VHDL User's Guide

B.1 Overview.

B.1.1 Introduction. When a VHDL circuit is compiled with the Intermetrics VHDL toolset,
the intermediate C code must be intercepted and transformed to be linked with AFIT's parallel
VHDL simulator (VSIM). VSIM runs sequentially on a single processor, or in parallel on the Intel
iPSC/2 and iPSC/i860 Hypercubes. For parallel simulations, VSIM runs over SPECTRUM-a
testbed that provides an interface between user applications and the parallel processing environ-
ment. The subset of VHDL circuits that can be simulated with VSIM includes structural descrip-
tions of logic gates and simple processes.

B.1.2 Process. The process for developing and running parallel VHDL circuit simulations
is as shown in Figure 53. In general, the following steps must be taken:

1. Write VHDL source code to describe the circuit to be simulated.

2. Compile, Model Generate, and Build using Intermetrics' VHDL tools.

3. Use the postprocessor, pbuild, to generate C code that can run with VSIM.

4. Compile and run the C code with VSIM on a sequential processor.

5. Use vmap to generate behavior id numbers and dependencies.

6. Decide on partitioning strategy and create logical process (LP) dependency file, ipx.arcs,
and behavior-to-LP mapping file, lpx.map.

7. Compile with VSIM and SPECTRUM on the Hypercube and run the simulation in parallel.

B.1.3 Related Files.

B.1.3.1 The Postprocessor. The postprocessor, called pbuild, is used to translate
Intermetrics' C code into code compatible with VSIM. The files necessary for operation and main-
tenance of pbuild are shown in Table 2.

B.1.3.2 VSIM. The AFIT parallel VHDL simulator, VSIM, is comprised of two groups
of files. The first group, listed in Table 3, contains all of the VSIM-specific files required for
sequential operation. When the simulation is run in the sequential mode, the executable filename
is generally the name of the circuit. When the simulation is run on a parallel machine, the files
of Table 4 are also included, and the executable file called by the user is generally called "host,"
which loads each node of the hypercube with the appropriate node programs.

B.1.3.3 VMAP. VMAP is used to determine the behavior id numbers and dependen-
cies. In order to use VMAP, run the simulation in sequential mode with MAPPING defined in vs im. h.
Then run the output through the program called vmap. The files required for VMAP operation
and maintenance are shown in Table 5.

B.1.3.4 Other Files. Other files related to VSIM simulations are listed in Table 6.
These include the source code and headers for Intermetrics' intermediate C code, LP dependency
and mapping files, output files, and some helpful scripts.

90

Fm--'

S~PARC hypectub

Figure 53. Overview of Parallel Simulation Session

Table 2. Files Necessary for Maintenance and Operation of the Postprocessor

File Description

pbuild Executable called by user, finds intermediate C code and
calls plex.

plex Executable called by pbuild, uses lexical analyzer and

regular expressions to find and transform intermediate C
code.

pbuild.c Source code for pbuild.
plex.l Lex description and rules for pattern matching.
plex.h Header file for plex.l and plex-routines.c.
plex-routines.c Routines called by plex.l to transform data.
stack.c Character stack used by plex-routines.c.
stack.h Header file for stack.c.
Makefile Describes sequence of commands necessary for generating

executables. The command "make" generates pbuild.
Use "make plex" to generate plex.

Table 3. Files Necessary for Maintenance and Operation of VSIM

File Description I
vsim.h Header file for vinit.c, vsim.c, vtools.c, and vspec.c. Modeled

after Intermetrics' simutl.h.
vinit.c Initialization routines for VSIM.
vsim.c The main simulation loop and functions.
vtools.c Tools provided for printing VSIM state variables and queues.

Compilation is optional-only required for maintenance
purposes.

91

Table 4. Files Necessary for Maintenance and Operation of Parallel VHDL Simulations using
SPECTRUM

File Description

vspec.c Contains the functions that provide VSIM's interface to
SPECTRUM.

vfilt.c Contains the null-message protocol filters. Modeled after
AFIT's chanclocks.c.

u-null-filt.c Table of function-pointers to filters in vfilt.c.
globals.h The standard header file for SPECTRUM. Modified to

redefine event structure.
application.h Included by globals.h, this file contains application-specific

global information for SPECTRUM and vspec.c. Most
importantly, this file is where the number of LPs
are specified for a particular simulation.

lp-man.c Provides SPECTRUM's LP-level functions.
cube2.c Provides hardware interface for lp-man.c.
cube2.h Header file for cube2.c and host2.c.
host2.c Host program used to load nodes and start simulation.

Table 5. Files Necessary for Maintenance and Operation of VMAP

File Description
vmap Executable used to generate mapping.
vmap.c Source code for vmap.
list.c Linked-list functions for vmap.c.
list.h Header file for list.c.
makefile Describes command sequence necessary for generation of vmap.

Table 6. Other Files

File Description

plex.log Report generated by postprocessor.
(ckt).c Postprocessor output file, named by the user when invoking
.aig_(ckt).c Big C file containing intermediate C code prior to

transforming with plex.
pbuild. This is the intermediate C code.

FN* Header files included by (ckt).c.
lpx.out Output files for parallel simulations. For example, "1p2.out"

corresponds to the output of LP2. In sequential simulations,
the output is sent to "stdout."

lpx.arcs LP dependencies and output delays, generated by the user.
lpx.map Behavior-to-LP mapping description, generated by the user.
logx SPECTRUM reports from each LP.
sgrep Script used to extract signal changes from VSIM's output and

sort by time and signal name.

92

S The following setup Intermetrics' VHDL
set path = ($path /usr/vhdl/bin)
setenv VHDLBIN /usr/vhdl/bin
setenv VHDL.LIBROOT /usr/vhdl/shiplib
setenv VHDLCOHMON /usr/vhdl/common
setenv VLSHELPFILE /usr/vhdl/common/help.txt

Figure 54. Section of .cshrc File for Setting up Intermetrics VHDL in the AFIT VLSI Lab

B.2 Implementation.

B. 2.1 Introduction. This section describes how to create and run parallel VHDL simulations
with VSIM. The following section illustrates ohese steps with an example.

B.2.2 Generating VHDL Source Code. The first step is to create the VHDL circuit descrip-
tion in one or more . vhd files. VSIM can simulate structural descriptions of logic gates and other
simple processes. Circuits are created the same way as for Intermetrics' circuits, with the following
limitations:

B.2.2.1 VHDL Source Code Limitations for VSIM. Signals can be bits or bit-vectors,
but bit-vector inputs must be described one bit at a time, e.g., Bus (0) <= 'I after 10 us;.

Processes should be one-line descriptions (Out I <= Inl AiD In2 after gate-delay;); however,
multiline processes-delimited by begin and end process may be used provided they either wait
on all signals, or the process terminates after first use, i.e., it contains a wait; statement at the
end of the process block.

It is uncertain how functions and procedures will act in VSIM. For example, functions to
describe multi-valued logic-or signal resolution-have not been tested. Their implementation
may or may not be trivial; however, the file vsin.h would most likely have to be modified to
include the proper macros and type-definitions. Intermetrics' file, sizutl.h, was used as a baseline
for vsin.h, with much of the (at the time) unnecessary data removed.

B.2.3 Setting up a User Library for Circuit Models. In order to use Intermetrics VHDL
simulator, the following environment variables must be defined in the user's . cshrc file: VHDLBIN,
VHEDLLIBROOT, VHDLCONNOI, and VLS-IELPFILE. Intermetrics' VHDL is available ou in the VLSI
lab, and is in the process of being installed on aphrodite in the Parallel Simulation Lab.' The
correct environment setup for using Intermetrics VHDL in the VLSI lab is shown in Figure 54.

Once the correct environment variables are set, the user creates a work library by using
vls, define, and makelib, as shown in Figure 55.2 The commands setlib and dir can be used
to view the current library and its contents, respectively. For the most convenience when using
the postprocessor, the user should give the work directory the same name as his or her userid
(C{LOGIAE)}).

1Also, hercules on the VAX cluster has a version of Intermetrics' VHDL simulator.
2 Should the error "VNNAU3IRELASEMOI" ever be raised by Intermetrics, the only solution is to delete the

complete user directory using delete-wer.

93

lovelace% vis
Standard VHDL 1076 Support Environment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

VLS>makelib -dir=/usr/vhdl/shiplib/tbreeden <<tbreeden>>
VHDVLS-I-CREATEDLIB - Library <<TBREEDEN>> successfully created.
VLS>define work <<tbreeden>>
VLS>setlib <<tbreeden>>
VEDVLS-I-DEFAULTLIBRARY - Default library is <<TBREEDEN>>.
VLS>dir
VHDVLS-I-NO_UNITS - No units found in <<TBREEDEN>>.
VLS>exit
lovelaceV.

Figure 55. Example Initialization of Intermetrics VHDL

B.2.4 Compiling, Model Generating, and Building. Every .vhd file is compiled individl, illy
by using the command vhdl 3 , such as

vhdl nandxgate.vhd

To "model generate" the specific entity/architecture pairs, the command mg is used; however, the
debug switch -debug=cknd is added as so:

mg '-debug=cknd nand.gate(simple)'

This generates the required . c and . h files for the postprocessor. This debug switch is also used
in the "build" phase, using the command build:

build '-debug=cknd -replace -ker=etdff etdff-config'

In this manner, the compilation script is genc-ated; then, the postprocessor can determine the
correct files and their order required for compilttion.

B.2.5 Extracting and Transforming Intermediate C Code. In order to transform the inter-
mediate C code generated during the "model generate" phase above, type

pbuild scriptname outputname.c

where scriptnnme is the compilation script generated during the "build" phase, and outputname. c
is the user's name for the transformed C file.

Finally, send the new . c file, and all the header files it includes, to the target machine for
sequential (and/or parallel) simulation. The header files are named in the top of the new . c file,
and can be found in the user's work directory.4

3The .vhd eAtension is optional.
4Unless the user has compiled them into another directory through commands in the VHDL source code.

94

B.2.5.1 Handling Difficult Files. When large circuit simulations are compiled under
Intermetrics, the corresponding C code generated by the postprocessor may be too large to compile
on the Intel Hypercubes. There are two methods of getting around this:

"* Run plex directly on each C code description generated in the model generate phase.

"* Reconstruct the VHDL circuit using hierarchical configuration descriptions.

If plex is run directly on each C code file, the resulting output can be compiled into separate
object files and linked together on the Hypercubes. Currently, the 16-bit shifter on the Intel i860
is constructed in this manner. The best way to do this is to first try using pbuild directly. If this
big C file does not compile, then run plex on each intermediate C file. The "main" file---found by
examining the compilation script-can either be edited by hand, or can be pulled in from the big
C file generated by running pbuild.

When VHDL structural circuit descriptions are build hierarchically, using hierarchical con-
figuration descriptions, the size of intermediate C code resulting from model generating the overall
configuration file is significantly reduced. For example, a Wallace Tree multiplier was designed
in this manner. Even though the multiplier has about 20 times more logic gates than some other
VSIM/VHDL circuit descriptions, the amount of C code is about the same. The postprocessor does
not, however, catch all of the include directives necessary for compilation. These can be found and
inserted "by hand" by inspecting each intermediate C code representation of each configuration.

For example, here are portions of the intermediate C code for the wallace tree multiplier prior
to transformation:

/* CGFWALLACETB */

#include "simutl .h"
#include "Tn26"

static char Z000006B-trcbck = {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 66, 0 };

#include "/usr/vhdl/shiplib/tbreeden/FN21712"
#include "/usr/vhdl/shiplib/tbreeden/FN21682"

/* CFGWALLACETREE_2 */

#include "simult.h"
*include "fn26"

static char Z0000068_trcbck O=
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 96, 84, 82, 69, 69, 95, 50, 0 };

#include "/usr/vhdl/shiplib/tbreeden/F121682"
*include "/usr/vhdl/shipl ib/tbreeden/FI21667"
#include "/usr/vhdl/shiplib/tbreeden/F121607"
#include "/usr/vhdl/shiplib/tbreeden/FN2665"

95

#include "/usr/vhdl/shiplib/tbreeden/F121597"

/* CFGWALLACETREE_1 */

#include "simutl.h"
#include "fn26"

static char Z0000065_trcbck 0= f
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 49, 0;

#include "/usr/vhdl/shiplib/tbreeden/FN21667"
#include "/usr/vhdl/shiplib/tbreeden/FN21652"
#include "/usr/vhdl/shiplib/tbreeden/FN21622"
#include "/usr/vhdl/shiplib/tbreeden/FN2665"
#include "/usr/vhdl/shiplib/tbreeden/FN21607"
#include "/usr/vhdl/shiplib/tbreeden/FN21597"

After transformation, only the two include directives from the top of the first file are included in
the transformed file:

/* CGFWALLACETB */

#include "vsim.h"

static char Z000006B-trcbck 0=
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 66, 0 1;

#include "7121712"

#include "FN21682"

/* CFGWALLACE_TTRE_2 */

static char Z0000068_trcbck 0= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 50, 0 1;

/* CFGOALLkCE-._TREE.1 *I

96

static char ZOO00065_trcbck 0= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 49, 0 };

By examining the initial intermediate C code, the user can then put all of the include directives in
the top of the transformed file, as shown:

/* CGFWALLACETB */

*include "vsim.h"

static char ZOOOOO6B-trcbck 0= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 66, 0 };

/* Added by TAB, 2 Oct 92 */

#include "1721712"
#include "FN21682"

#include "F121667"
#include "FN21607"
#include "F1N2665"
#include "FN21597"
#include "FN21662"
#include "P121622"
#include "FN21637"

#include "1F2635"
#include "1F2645"

B.2.6 Running VSIM on a Sequential Machine. As is the case with Intermetrics' simulator,
each gate is dynamically assigned a behavior number in VSIM. VSIM must first be run in sequential
mode in order to see how the behaviors are numbered. To do this, define MAPPING in vsim.h. This
way, when the simulation is run, VSIM reports which behaviors are executing and which behaviors
are consequently scheduled because of that execution, i.e., dependent behaviors.

To specify that the simulation is to be sequential, define SPARC in vsim.h or in the makefile.5

Also, if signal change output is desired, define OUTPUT in voin. c.

Now compile vinit. c, vain. c-and optionally vtools. c-with the intermediate C code
circuit description, and run the simulation.

-Although the name is SPARC, sequential simulations may be compiled and run on the hypercube host or most
likely any other machine with a C compiler, if desired.

97

0 # LP index
2 # lumber of input LPs
1 2 # LP indices of input LPs
0 0 # Polling frequencies of input LPs
0 0 # Offset of polling frequency
2 # Number of input lines
1 2 # LP number for each input line
2 # Number of output LPs
2 3 # LP indices of output LPs
2 # Number of output lines
2 3 # LP index for each output line
3000000 5000000 # Minimum delays for each output line

Figure 56. Example Format for One LP in an lpx.arcs File

B. 2.7 Generating Partitioning Strategies. After running the sequential simulation with map-
ping turned on, the output can be run through vmap to generate a list of behaviors and dependencies.
This step is not necessarily required; vmap was created to generate an output file that can be used
in future research related to circuit partitioning strategies. If the simulator output is in the file
etdff.raw, then type

vmap etdff.raw etdff.map

to generate the mapping file, etdff .map. If a list of signal changes is desired, the script sgrep is
provided to pull out and sort the signal changes by time and signal name as so:

sgrep etdff.raw etdff.out

If desired, this data can be compared with the output of Intermetrics' simulator in order to check
for correctness.

The user must now decide how to partition the circuit among LPs.6 Once the partition is
determined, an lpx.arcs file must be created to define the LP dependencies and output delays.
SPECTRUM uses this file. Also, VSIM reads an lpx. map file created to map each behavior to an
LP. These two files must be created with great care. VSIM and SPECTRUM assume the user knows
what he/she is doing, and in most cases, they faithfully try to comply. The lpx. arcs and lpx. map
formats are shown in Figures 56 and Table 7, respectively. 7

6 The scheme for distributing LPs among processors is defined at run time.
TThe polling frequencies and offsets in the .arcs files are not used with the current filters, so zeroes can be

entered. If the number of input or output LPs or lines is sero, the other entries relating to those LPs or lines are
omitted. The comments shown in Figure 56 and Table 7 are not included. Although more than one input line is
permitted from each LP, communications from one LP to another in VSIM can be considered to occur on one input
line. Delays are in femptoseconds.

98

Behavior LP Number
0 0
1 0
2 1
3 2

Table 7. Example Format for the lpx.map File

B.2.8 Running VSIM on a Parallel Machine. Before compiling, be sure the desired number
of LPs and the LP input file is specified in application.h. If application.h is in the user's
"/spectrum directory, this can be done by typing setips x, where x is the number of LPs desired.'

Remove the MAPPING and SPARC definitions and compile the intermediate C code with vinit. c,
vsim. c, vtools. c (optional), ip.man. c, cube2. c, u.nullfilt, c, and vfiit. c. This generates
the executable program that is loaded on the processors and represent each LP. Note that on the
iPSC/2, more than one LP may be loaded on a processor due to the multitasking capabilities of the
Intel 80386 processors. On the iPSC/i860, however, the number of LPs must match the number of
processors.

The host program is used to load the LPs on the processors. It's created by compiling
host2. c.

When the necessary files are compiled, type host. Among other things, it asks for the name
of the program to load, the number of processors desired, and the number of LPs. The number of
LPs must match the number specified in application.h. If not, the program "bails out."

Each LP reports when it is finished running, and after every LP has completed, the host
program reports time and message statistics. If OUTPUT was defined in vain. c and vspec. c, the
output can be found in the group of files labeled lpx.out, where x is the LP number. Timing
information can be found in logx, z again being the specific LP number. If DEBUG or REPORT is
set to '1' in globals.h, the logx files report more information than humanly consumable. This
comes from lp-man. c and cube2 , c. Usually, filters also have DEBUG output, but this author chose
to leave it out of vfilt. c for simplicity.

Finally, the lpx. out files can be concatenated (provided OUTPUT was defined) and agrep can
be invoked to generate a file that can be compared with the sequential output.

B.3 Example: An Edge-Triggered D Flip-Flop.

B.3.1 Introduction. This section goes through an example using the edge-triggered D flip-
flop of Figure 57 on page 114. The VHDL source code is compiled and run on a SPARC station in
the AFIT VLSI lab, sequential VSIM is run on a SPARC station in the Parallel lab, and output is
compared to Intermetrics' output. Finally, parallel simulations are executed on the Intel iPSC/2
Hypercube-one simulation with two LPs and no feedback, the other with three LPs and feedback
between two of the LPs.

All figures referenced in this example are located at the end of the document.

OThe program setips simply changes any integer in the first eight lines of application.h to the specified integer.
For more than nine LPs, the user must modify the file directly.

99

B.3.2 VHDL Source Code. First, two- and three-input NAND gates are created, as shown
in Figure 58 on page 115. For this example, these entity/architecture descriptions are located in a
user file called 'nand.nor. vhd."

Next, the NAND gates are structurally connected to form the edge-triggered D flip-flop. This
description, shown in Figure 59 (page 116), is in a file called "et.dftf .vhd."

To test this circuit, a "test bench" is written to apply input signals and receive output signals.
This file, et-dff-test-bench.vhd, is shown in Figure 60 (page 117), and the schematic is shown
in Figure 61 on page 118.

The last VHDL source file is the "configuration file," which structurally connects the compo-
nents, as shown in Figure 62. This file is called et-dff-config. vhd.

Intermetrics uses a "report control language" to generate a report of desired signal changes.
The file for this example, et.dff .rcl is shown in Figure 63.

B.3.3 Compiling, Model Generating, Building, and Simulating under Intermetrcs. A script
like that of Figure 64, on page 120, can be run to compile, model generate, build, and simulate
the circuit with Intermetrics VHDL. Notice the placement of "-debug=cknd" in the mg and build
phases. This generates the intermediate C code and build script required for the postprocessor,
pbuild.

The following is an example session using the script of Figure 64:

lovelace. °/vhdl/et-dff>et-dHf

vhdl "/vhdl/aoxgates/nand-nor .vhd

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et-dff.vhd

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et-dff-test-bench. vhd
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et-dffconfig. vhd
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

mg '-debug=cknd nand-gate(simple)'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object-file /home/inter/shiplib/tbreeden/FN272.o
H file /home/inter/shiplib/tbreeden/F1273
C file /home/inter/shiplib/tbreeden/FN274. c
mg '-debugfcknd three-input-nand-gate(simple)'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

100

Object-file /home/inter/shiplib/tbreeden/F1282.o
H file /home/inter/shiplib/tbreeden/FN283
C file /home/inter/shiplib/tbreeden/F1284.c
mg '-debug=cknd et-dft(structural)'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object-file : /home/inter/shiplib/tbreeden/FN2102.o
H file : /home/inter/shiplib/tbreeden/FN2103
C file : /home/inter/shiplib/tbreeden/FN2104.c
mg '-debug=cknd et..dff-test.bench(structural)'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object-file /home/inter/shiplib/tbreeden/F12112.o
H file /home/inter/shiplib/tbreeden/FN2113
C file /home/inter/shiplib/tbreeden/F12114.c
mg 1-debug=cknd -top et.dff.config'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object-file /home/inter/shiplib/tbreeden/F12117.o
H file /home/inter/shiplib/tbreeden/FN2118
C file /home/inter/shiplib/tbreeden/FN2119.c
build '-debug=cknd -replace -ker=et-dff etdff-config'
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Kernel com file is /home/inter/shiplib/tbreeden/F12122
sim et-dff
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

SIGTRAN Signal Tracing turned on
QUIESCE Quiescent state reached with no response after 612 ns

rg et-dff et-dff.rcl
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace. /vhdl/et-dff>

Here is the output from Intermetrics' simulator-found in et-dff .rpt:9

TIME I ----------------------------- SIGNAL NAMES.--------------------------
I

(NS) I A B CKT_Q_OUT CKTQBAROUT

'The + values are delta delays and can be considered to have a delta time value of zero.

101

0 I'0')0)0) '0'

3
+1 '1' '1'

6
+1 0' '0'

9
+1 I1' '
12
+1 '0' '0'

+1 '1' '1,

18
+1 0 •,00)

20 '0'

21
+1 '1' '1)

24
+1 '0'
50 I'1'

100 '1'
150 I'0'
200 '1'

206
+1 1l

209
+1 '01

250 '0'

300 '0'

350 '1'

356
+1 I'1

369

+1 '0'

400 31'

450 '0'

500 '1'

506
+1 I'1

509
+1 '0'

B.3.-4 Using the Postprocessor to Generate Intermediate C Code. Notice that after the

model generate phase, Intermetrics reported a "Kernel corn" file, F12122. This is the compila-
tion build script pbuild uses to build the intermediate C code: et.df . c, as shown below. The
report shown is always written to a file called plez.log.

lovelace.'/vhdl/et-dfl>pbuild F12122 et-dff.c
cp /houe/inter/shiplib/tbreeden/FI2119.c big.etAdf.c

102

cat /home/inter/shiplib/tbreeden/FN284.c >> big.et.dff.c
cat /home/inter/shiplib/tbreeden/FN274. c >> big.et.dff . c

cat /home/inter/shiplib/tbreeden/FN2104. c >> big.et.dff . c

cat /home/inter/shipl.b/tbreeden/FN2114. c >> big.et-dff. c
cat /home/inter/shiplib/tbreeden/FN2124. c >> big.et.dff.c
plex < big.et.dif.c > et-dff.c
Transformation in progress...

Approx lines: 1964
Comments: 5
#include directives modified: 5
#include directives removed: 13

{trace... changed to f... : 12
if(trceqp) tests removed: 21

"trace" or "TRAREC" lines removed: 133
Zlxxxxxx() calls removed: 4

ZSxxxxxx() functions modified: 1
Scalar "mksig" assignments modified: 10
Bit vector "mksig" assignments modified: 0
#ifdef MAPPING added: 6

Other function calls removed:

close-sigdicto: 1
maint.type(): 0

mrereal.typeo: 1
pop(): 13
pusho: 13

read-input (: 1
rmtrrec(: 0
rptstats(: 1
rpterr(: 23
Sta.._NonarrayComp(: 0
sched(): 0

timerO: 1
tpop(): 31

In addition to et-dff.c, copy all I files over to the iPSC/2.

lovelace. /vhdl/et.dff>

B.3.5 Sequential Simulation with VSIM. The intermediate C code, et-dff.c, and the
header files it includes, F12113, F1283, F1273, and F12103 are now linked with VSIM and simu-
lated on a sequential machine-neptune in this example. First, RAPPING is defined in vsin.h and

103

OUTPUT is defined in vsim. c and vspe c. c. " The following makefile compiles and links for either
sequential simulations (by typing make vaim) or parallel simulations (by typing make ipsc for the
iPSC/2 or make for the iPSC/i860):

SPARC macros
S-SINPATH=/olympus3/eng/tbreedenlvsim
S-.CKTPATH=/olympus3/eng/tbreeden/et-.dff
S-.SPECPATH=/olympus3/eiig/tbreeden/spectrum
S..OBJS=*{S-.SIMPATX}/vsim-o ${S-.SIMPATH}/vinito .0 *S-.SIMPATHI/vtools .0

${S-CKTPATH}/et-.dlff.0
S-.CFLAGS=-c -w -g -DSPARC

iPSC/2 macros
I-SIMPATH=/usr2/eng/tbreeden/vs ii
I-CKTPATE=/usr2/eng/tbreeden/et-.dff
MYSPECPATH=/usr2/eng/tbreeden/spectrumn
UVAPATI=/usr/s imulate/spectrum/uva
AFITPATH=/usr/siaulate/spectrum/afit
AFIT-.INC=/usr/simnlate/spectrum/afit/include
FILTERPATH=${NYSPECPATE}
SPECHEADERS=${NYSPECPATE}/globals .h ${MYSPECPATE}/appl icat ion. h

NODE-.OBJS=${I-.SIKPATE}/vs im.o ${I-.SIMPATH}/vinit .0 ${L-SIMPATE}/vtools .0

V{LSIMPATE}/vspec .0 ${MYSPECPATH}/lp-.man.o ${KYSPECPATH}/cube2 .o
${NYSPECPATH}/u-.nu11filt .0 ${NYSPECPATH}/vfilt .0

$({-CKTPATH}/et-.dU .0

I-CFLkGS=-c -v

iPSC/i860 macros
I8..SINPATH=/usr2/tbreeden/vsim
I8..CKTPATH=/usr2/tbreoden/et-.dff
KY8SPECPATH=/usr2/tbr..den/spectrum
UVA8PATE=/usr2/tbreeden/ spectrum
AFITSPATH=/usr2/tbreeden/spectrum
AFIT8..INC=/usr2/tbreeden/spectrum
FILTER8PATH=${NY8SPECPATE}
SPEC8HEADERS=*{RY8SPECPATE}/globals .h ${MYOSPECPATH}/application .h

IODE8-.OBJS=${18-.SINPATH}/vuim .0 $(18-.SINPATRI/vinit .0 ${18..SINPATE}/vtools .0
*{18..SIKPATE}/vapec .0 ${NY8SPECPATH}/lp-.man.o ${KY8SPECPATI}/cube2 .0
*{MY8SP`ECPATB}/u...uull.filt .0 *{NY8SPECPATH}/vfilt .0

${I8-KTPATH}/et-.dtff.0
I86OCC~icc

S other macros
CC=cc

-------------iPSC/i860 ----------

1 0The mnakefile defines SPARC.

104

all: host8 node8

host8: ${NY8SPECPATH}/host2.o
$(CC) -o host *{NY8SPECPATH}/host2.o -host

nod.8: ${NODES-.OBJS}
$(1860CC) -o et..dff ${NODE8-.OBJS} -node

${NYSSPECPATRI/host2 .0: ${NY8SPECPATH}/host2.c $f*AFIT8_.INIC/cube2 .h

cd ${NY8SPECPATH}; \
$(CC) ${L.CFLAGS} -I${AFIT8-.INIC ${NY8SPECPATH}/host2. c

${18..SINPATRI/vsim. 0: ${18..SIKPATHI/vsin. c ${18-.SIKPATH}/vsim.h
${NYSSPECPATH}/applicat ion. h

cd ${18..SIKPATH}; \
$(I860CC) ${L-CFLAGS} -I${NY8SPECPATH} vsiE.c

${18-.SIKPATRI/vinit .o: $f18-.SIKPATHI/vinit-.c ${18-.SIKPATH}/vsim .h
*{KY8SPECPATH}/application .h

cd $(18-.SIKPATH); \
$(I860CC) *{L-CFLAGS} -I*{NY8SPECPATHI vinit. c

*{18.SIKPATh}/vtools .o: ${18...SIKPATRI/vtools . $(I{8-.SIKPATE}/vsia. h
cd ${18..SIKPATH}; \
$(I860CC) *{I-.CFLAGS} vtools.c

${18..SIKPATX}/vapec .o: 6f18..SIMPATHI/vapec- . C${1..SIMPATh}/vaim .h
${NY8SPECPATE}/application .h

cd *{18_.SIKPATH}; \
$(1860CC) ${I-.CFLAGS} -I*{NY8SPECPATI} vspec.c

${NY8SPECPATH}/lp...an .o: ${UVA8PATH}/lp_=...sc ${SPEC8HEADERS}
cd ${KY8SPECPATH}; \
* (I860CC) $({LCFLAGS} -I*{NY8SPECPATH} ${UVA8PATH}/lp..man. c

${KYSSPECPATH}/cube2 .o: ${AFIT8PATE}/cube2 . $f*AFIT8PATHI/cube2. c
${SPEC8HEADERS} ${&FIT8_.INC}/cub.2 .h

cd ${NY8SPECPATH}; \
$(I860CC) ${I-.CFLAGS} ${AFIT8PATH}/cube2. c

${KY8SPECPATE}/u..null..filt .0: W{ILTERSPATE}/u..null-.filt .c
${SPEC8HEADERS)

cd ${NY8SPECPATE}; \
* (1860CC) ${I-.CFLAGS} -I${MYOSPECPATE}

${FILTERSPATH}/u-.null..filt. c

${KYSSPECPATRI/vfilt .o: $(FILTERRPATU}/viilt . $ *SPEC8HEADERS}
cd ${KY8SPECPATH}; \
* (1860CC) $({LCFLACS} -DVHDL -I${NY8SPECPATE}

${FILTEflBPATE}/Yfilt. c

105

$(18_.CKTPATHI/et..dff .o: et..dff. c $f18-.SIMPATH)/vsim.h
$(1860CC) ${I-CFLAGS} -I*{18..SINPATH} et-.dif.c

---------------iPSC/2 ----------

ipsc: host node

host: ${NYSPECPATH}/host2 .0
$(CC) -o host ${NYSPECPATH}/host2.o -host

node: ${NODE-.OBJS}
$(CCC) -o et..dff ${NODE-.OBJS} -node

${MYSPECPATH}/host2 .0: ${NYSPECPATE}/host2.c $f*AFIT..INIC/cube2. h
cd ${NYSPECPATH}; \
$(CC) *{I-.CFLAGS} -I${AFIT..INC} ${MYSPECPATR}/host2.c

$f{-SIMPATH}/vsim. 0: ${I_.SIMPATH}/vsim. c ${I..SIMPATH}/vsim.h
${NYSPECPATH}/applicat ion. h

cd ${I-.SIMPATH}; \
$(CC) $f{LCFLAGS} -I*{NYSPECPATH} vaim.c

${I-.SIMPATH}/vinit .o: ${I-.SIMPATHI/vinit .c *{L-SINPATHI/vsiu .h

${KYSPECPATH}/applicat ion. h
cd ${I-.SINPATE}; \
$(CC) $f{LCFLAGS} -I*{NYSPECPATH} vinit .

${I..SIMPATH}/vtools .o: ${I-.SIMPATH}/vtool . c ${L-SINPATh}/vsia. h
cd $f{-SIMPATHI; \
$(CC) ${1.CFLAGS} vtools.c

${I-.SIMPATH}/vspec .o: ${I-.SIMPATHI/vapec .c ${L-SIMPATHI/vsim. h
${MYSPECPATH}/applicac ion. h

cd ${I-.SIMPATH}; \
$(CC) ${I-.CFLAGS} -I${MYSPECPATI} vspec.c

${KYSPECPATH}/lp..man. o: ${UVAPATH}/lp...man. c $f{SPECHEADERS}
cd ${WISPECPATH}; \
$ (CC) $f{LCFLAGS} -I${MYSPECPATH} *{UVAPATH}/lp...ian. c

${RYSPECPATH}/cube2 .0: ${AFITPATH}/cube2 .c ${AFITPATH}/cube2. c
${SPECHEADERS} ${AFIT-INC}/cube2 .h

od *{KYSPECPATB}; \
$(CC) *{I..CFLAGS} -I*{AFIT-.IIC} -I${KYSPECPATE)

${AFITPATHI/cube2. c

${IYSPECPATH}/u...nll..filt .o: ${FILTERPATH}/u-jnull-.filt .c

${SPECHEADERS}
cd ${RTSPECPATh}; \
$(CC) $f{LCFLAGS} -I${NYSPECPATH}

${FILTERPATH}/u...null...iilt. c

106

${NYSPECPATN}/vtilt .0: ${FILTERPATE}/vfilt .c ${SPECHEADERS}
cd $(NYSPECPATH}; \
$(CC) ${L-CFLAGS) -DVHDL -I${NYSPECPATE}

${FILTERPATH}/vfilt. c

${I-.CKTPATH}/et-.dfl .o: et-.dfI. c ${I..SIMPATRI/vsim .h
$(CC) ${L-CFLAGS} -I${I..SIMPATH} et-.dit.c

---------------SPARC ----------
vsim: ${S..OBJS}
$(CC) -o .t..df 1 -g S{S..OBJS}

*{S-.SIMPATE}/vsim.o: *{S..SIMPATH}/vsim. c ${S..SIMPATH}/veim.h
cd *{S-.SIMPATI}; \
$(CC) ${S-.CFLAGS} -I${S..SPECPATH} vsim.c

${S-.SIMPATH}/vinit .o: M{-.SIMPATH}/vinit .c $S{S..SINPATI}/vsim.h
cd $S{S.SIMPATH}; \
$(CC) *{S-.CFUAGS} vinit.c

${S..SIMPATH}/vtools .0: ${S-SIMPATH}/vtools .c ${S-.SINPATHI/vsim .h
cd W{-.SIMPATH}; \
$(CC) $S{S-CFLAGS} vtools.c

VS{S-cKTPATE}I/*t-.df.o: et..df I. c ${S..SIMPATH}/vsim .h
$(CC) ${S..CFLAGS} -I${S..SIMPATH} et-.dtf. c

After compiling, a sequential simulation may be run. For this example, the command is

*t-.dff > temp

The output, in tamp, is already in time order"1 ; however, agrep sorts by time and then signal name.
The following command is typed:

agrep temp at-.df.out

The output is now sorted by time and signal name, and can be compared with Intermetrics' output
for accuracy. Using grep, th, values for CKT_.Q_.OUT ar12

3 nou, CKT-.Q-.OTJT from 0 to I
6 na, CKT-.Q...UT Iron 1 to 0
9 na, CKT..Q-.OUT from 0 to 1
12 no, CKT..Q_..UT from 1 to 0
15 no, CKT-.Q-O.UT from 0 to 1

I I This is not the came for parallel simulations.
"1For complete accuracy, every signal change should be examined. Only one signal was shown here for brevity.

107

18 ns, CKTQOUT from 1 to 0
21 ns, CKTQOUT from 0 to 1
24 ns, CKTQOUT from 1 to 0
206 ns, CKT_Q_OUT from 0 to 1
359 ns, CKT_Q_OUT from 1 to 0
506 ns, CKTQOUT from 0 to 1

B.3.6 Extracting Behavior Information using VMAP. Since MAPPING was defined, the out-
put in temp also has behavioral information. Specifically, behavior names, id numbers, and depen-
dencies, as shown here:

0 fs, executing beh 9: <<TBREEDEN>>ET_DFFTESTBENCH(STRUCTURAL)
Add behav 1 to active list at 0 fs
Add behav 2 to active list at 0 fs
Add behav 1 to active list at 15 ns
Add behav 2 to active list at 15 ns
Add behav 1 to active list at 20 ns
Add behav 2 to active list at 20 ns
Add behav 1 to active list at 50 ns
Add behav 2 to active list at 50 ns
Add behav I to active list at 150 us
Add behav 2 to active list at 150 ns
Add beha; 1 to active list at 200 ns
Add behav 2 to active list at 200 ns
Add behav I to active list at 300 ns
Add behav 2 to active list at 300 ns
Add behav I to active list at 350 us
Add behav 2 to active list at 350 ns
Add behav I to active list at 460 ns
Add behav 2 to active list at 450 ns
Add behav 1 to active list at 600 ns
Add behav 2 to active list at 500 ns
0 fs, executing beh 8: <<TBREEDEN>>ETDFFTESTBENCH(STRUCTURAL)
Add behav 3 to active list at 0 fs
Add behav 3 to active list at 100 ns
Add behav 3 to active list at 250 ns
Add behav 3 to active list at 400 nu
0 fs, executing beh 7: <<TBREEDEN>>ETDFF(STRUCTURAL)
0 fs, executing beh 6: <<TBREEDEN>>ETDFF(STRUCTURAL)
0 is, executing beh 6: <<TBREEDEN>>IAND_GATE(SIMPLE)
Add behav 4 to active list at 3 ns
Add behav 7 to active list at 3 ns
0 fs, executing beh 4: <<TBREEDEN>>IANAD_GATE(SINPLE)
Add behav 6 to active list at 3 us
Add behav 6 to active list at 3 ns
0 is, executing beh 3: <<TBREEDEI>>AAND_GATE(SIMPLE)
Add behav 0 to active list at 3 us
Add behav 2 to active list at 3 ns
0 is, executing beh 2: <<TBREEDEN>>THREEINPUTNAIDGATE(SIMPLE)

108

Add behav 3 to active list at 3 ns
Add behav 5 to active list at 3 ns
0 Is, executing beh 1: <<TBREEDEN>>NAIDGATE(SINPLE)
Add behav 0 to active list at 3 ns
Add behav 2 to active list at 3 ns
Add behav 4 to active list at 3 us
0 is, executing beh 0: <<TBREEDEN>>NANDGATE(SINPLE)
Add behav I to active list at 3 us

Using vuap, this information can be filtered out of temp and saved. The vmap program
attempts to "guess" the delays of each behavior, based on when dependent behaviors are scheduled.
The user is given a chance to override these guesses. In most cases, the behaviors which represent
gates show correct delays; the other "system" behaviors should be set to a delay of zero. Here is
how vmap is used for this example:

neptune: /et.dff>vmap temp et.dff.map
Collecting behavior names and delays...

ETDFFTESTBEXCH(STRUCTURAL) Delay = 0
ETDFF(STRUCTURAL) Delay = 3000000
IAIDGATE(SIMPLE) Delay = 3000000
THREEINPUTNAIDGATE(SIMPLE) Delay = 3000000
Change delays? y

ETDFFTESTBEICH(STRUCTURAL) Delay = 0
Change delay? n

ETDFF(STRUCTURAL) Delay = 3000000
Change delay? y

Enter new delay: 0

NANDGATE(SIMPLE) Delay i 3000000
Change delay? n

THREE-IPUTIAIDGATE(SIMPLE) Delay = 3000000
Change delay? n

ETDFFTESTBDENCH(STRUCTURAL) Delay = 0
ETrDFF(STRUCTURAL) Delay 0
NAND_.GATE(SINPLE) Delay = 3
THREEINPUTIAIDGATE (SIMPLE) Delay = 3000000
Change delays? n

Output written to et.dff.map

neptune:"/et-dff> more et.dff.map
9 ETDFFTESTBENCH(STRUCTURAL) 0 1 2

109

8 ETDFFTESTBEiCCH(STRUCTURAL) 0 3
7 ETDFF(STRUCTURAL) 0
6 ETDFF(STRUCTURAL) 0
5 IANDGiGATE(SIMPLE) 3000000 4 7
4 NAIDGATE(SIlPLE) 3000000 5 6
3 iANIDGATE(SINPLE) 3000000 0 2
2 THREE_.IIPUT-NANDliGATE(SIKPLE) 3000000 3 5
1 NAIDGATE(SIKPLE) 3000000 0 2 4
0 NAIDGATE(SIKPLE) 3000000 1
neptune: /et-dff>

The format for et-dfi. out, shown above, is

{behavior-id behavior-name delay {dependent-behaviors}o+ newlinell+

Currently, the only way to map behavior numbers to behaviors is to compare the output of
either VSIM or vmap to the schematic. For the edge-triggered D flip-flop, this is shown in Figure 65
on page 120.

B.3.7 Generating . arcs and .map Files for Partitioning.

B.3.7.1 A 1-LP Conflguratio.n The whole circuit can be simulated as one LP. This
configuration can be used to compare timing data, etc., with other configurations. An ixi. map file
is not required; however, an p1 . arcs file is required and is written as so:

0
0
0
0
0

B.3.7.2 A 2-LP Confguration. The first configuration to be tested has 2 LPs. LPO
contains behaviors 0, 1, 2, 3, 8, and 9. LP1 contains behaviors 4, 5, 6, and 7. See Figure 66 on
page 121. The arcs file that SPECTRUM uses is 1p2. arcs, and it contains the following mapping:

0
0
0
1
1
1
I

3000000

1
1

110

0
0
0
1
0
0

The map file is for VSIM to identify which LPs "own" which behaviors. VSIM always expects this
filename to be "ipx.map", where the number of LPs replaces x. Therefore, ip2.map is written as
follows:

00
10
20
30
4 1
51
6 1

71
80
90

B.3. 7.3 A 3-LP Configuration with Feedback. This configuration, shown in Figure 67
(page 121), is used to demonstrate VSIMs capability to handle feedback among LPs. The .arcs

file is ip3. arcs, and contains the following:

0
0
0
2
12
2
12
3000000 3000000

1
2
02
00
00
2
02
1
2
1
2
3000000

111

2
2
01
00
00
2
0 1
1
I
1
1

3000000

Then, 1p3.map is written as follows:

00
10
20
30
41
52
6 1
72
80
90

B.3.8 Parallel Simulation. Prior to simulating in parallel, MAPPING is turned off in vsin.h.
This is not a requirement, but mapping information is no longer needed. Prior to changing the
number of LPs for any simulation, application. h is modified, using setips, to define NU!_PROCS
and INPUT-ARCS, the number of LPs and the .arcs filename, respectively. The intermediate C
code, its header files, and the lpx. arcs and lpx.map files are sent to the hypercube and compiled
each time the number of LPs is changed.

B.3.8.1 Simulating the Edge-Thiggered D Flip-Flop as one LP. The number of LPs
is set to 1 and the same makefile is used (this time typing "make") to compile. The simulation is
started by typing host. Here is an example:

c386 8:host
Which application do you want to use?:et-dff
Enter the command line arguments for the program

Is assignment of logical processes to nodes to be from a file? (y/n) -> n
How many cube nodes do you want to use?:1
How many LP's are in this application?:1
Do you want to use the 'natural' node assignment? (y/n): y

112

Getting cube of size 1 - stand by.
load -H -p 0 0 et.dff
startcube
Cube Loaded
LAST-TIME message from LP 0 on node 0, pid 0.

End stats messages:
LP 0 (node 0, pid 0): 0 received, 0 sent.
Max message count set at 10, Max messages removed was 0.
HOST: Total CPU time waiting: 0.000000 (msecs)
HOST: Wall clock time loading cube: 7 (secs)
HOST: Wall clock time waiting: 4 (secs)
c386 9:

Now, the output is found in lpi. out and can be compared to etdff . out, which the previously
verified output. Also, an LP report file, logo is generated by SPECTRUM with the following
information:

LP 0 wall time taken is 4.194 (secs)
LP 0 messages received 0
LP 0 messages sent 0

B.3.8.2 Simulating the Edge-Triggered D Flip-Flop as more than one LP. The process
is the same as for one LP; however, the output is combined in the lpx. out files. For example, the
two LP configuration's output is found in lpO. out and lpi . out. These two files are concatenated
and agrep is used to sort them. The output from agrep is verified against et_.dfif. out. The results
of all 1, 2, and 3 LP configurations are shown in Table 8.1314

B.3.9 Summary. This guide demonstrates how to compile a VHDL circuit with the Inter-
metrics VHDL toolset, intercept the intermediate C code, and compile and link with AFIT's parallel
VHDL simulator (VSIM). VSIM simulations of an edge-triggered D flip-flop are demonstrated for
a single processor and in parallel on the Intel iPSC/2 Hypercube.

13 These results were run one time for each configuration, and are for comparison purposes. If statistics are required,
more runs would have to be made.

14 For the 3 LP/2 node configuration, LPO was loaded on node 0, and LPs I and 2 were loaded on node 1.

113

THIS

PAGE

MISSING
IN

ORI GINAL
DOCUM E- NT

entity NANDGATE is
generic (gate-delay: TIME := 3 ns);
port (IN_1,IN_2: in BIT := '0';

OUT_1: out BIT := '0');
end NAIDGATE;

architecture SIMPLE of NANDGATE is

begin
OUT-1 <= IN-1 nand IN_2 after gate-delay

end SIMPLE ;

entity THREEIMPUTEANDGATE is
generic (gate-delay: TIME := 3 ns);
port (IN._1,IN_2,IN_3: in BIT := '0';

OUT_1: out BIT := '0');
end THREEIINPUTNAIIDGATE;

architecture SIMPLE of THREEINPUTNAIDGATE is

begin
OUT_1 <= not (I1_ and IN_2 and IN..3)

after gate-delay
end SIMPLE ;

Figure 58. VHDL Descriptions of Two- and Three-Input NAND Gates

115

-- Lt T. Andy Breeden, GCE-92D, 4 Aug 92

-- Edge-Triggered D Flip-Flop (structural)

entity ETDFF is

port (D,CP: in Bit;
Q: out Bit;
Q_Bar: out Bit);

begin
end ETDFF;

architecture Structural of ETDFF is

component ANANDGate

port (In-1, In_2: in Bit;
Out-1: out Bit);

end component;

component AU3lnputNANDGate

port (In_., In_2, In_3: in Bit; Outl: Out Bit);

end component;

signal XILOut, 12_Out, 13_Out, 14_Out: Bit;

signal XSOut, X6_Out: Bit;

begin

XI: ANADGate port map (X4_Out,X2_OutXI_Out);
X2: AiAINDGate port map (X1_Out,CP,X2_Out);

X3: A_31nputSAJDGate port map (X2_Out,CP,X4_Out,X3_Out);
M4: A._ANDGate port map (13_Out,D,14_Out);

XS: AiiANDGate port map (X2_Out,16_Out,X5_Out);

M6: ANANDGate port map (XSOut,I3_Out,X6_Out);

Q <= XSOut;
Q_Bar <= X6_Out;

end Structural;

Figure 59. Structural VHDL Description of Edge-triggered D Flip-flop

116

-- Test Bench for Edge-Triggered D Flip-Flop
-- Lt T. Andy Breeden, GCE-92D, 4 Aug 92

entity ETDFFTestBench is
end ETDFFTestBench;

architecture Structural of ETDFFTestBench is

component Test-Circuit

port (D,CP: in Bit;
Q,QBar: out Bit);

end component;

signal a,b,Ckt_Q_Out ,Ckt_Q_BarOut: Bit;

begin

Circuit: Test-Circuit port map (a, b,

CktQOut, CktQBarOut);

a <= '0' after 0 ns, '1' after 100 ns,
'0' after 260 ns, '1' after 400 us;

b <= '0' after 0 ns, '1' after 16 ns, '0' after 20 ns,

'1' after 50 ns, '0' after 150 ns, '1' after 200 ns,
'0' after 300 ns, '1' after 350 ns, '0' after 450 ns,
'1' after 500 ns;

end Structural;

Figure 60. VHDL Description of Test Bench for Edge-triggered D Flip-flop

117

Test Bench

Figure 61. Schematic of Test Bench for Edge-triggered D Flip-flop

118

-- Configuration file to connect Edge-Triggered

-- DFF to test bench.

-- Lt T. Andy Breeden, GCE-92D, 4 Aug 92

Library work;
use work.all;
configuration ETDFFConfig of ETDFFTestBench is
for Structural

for Circuit: Test-Circuit
use entity work.ETDFF(Structural);
for Structural

for all: ANfAIDGate
use entity work.NAIDGATE(Simple);

end for;
for all: A-31nput-NAND-Gate

use entity work.ThreeInputNAIDGate(Simple);
end for;

end for;
end for;

end for;
end ETDFFConfig;

Figure 62. VHDL Description of Configuration File for Edge-triggered D Flip-flop

-- Output for Edge-Triggered DFF simulation using
-- Intermetrics' Report Control Language (RCL)

-- Lt T. Andy Breeden, GCE-92-D, 4 Aug 92

simulation-report ETDFFSin is
begin

select-signal: a,b,CktQOut,CktQBar_Out;
eample.signals by-event in ns;

end;

Figure 63. VHDL Report Description for Edge-triggered D Flip-Flop

119

#!/bin/csh -v
Vhdl -/vhdl/aox...gates/nand-.nor
vhdl et-dti.vhd
vhdl et-.dft~test-.bench
Vhdl et-.dfitconfig

Mg '-debug=cknd nand..gate (simple)'
mg '-debug~cknd thr....input..nand-gate (simple)'
mg '-debug=cknd et-.dffI(structural)'
mg '-debug~cknd et-.dffttest-.bench (structural)'
mg '-debug~cknd -top et-.dff-config'
build '-debug=cknd -replace -ker=et..dff et..dttconfig'
sin et-.df I
rg et-.dtf et...dff.rcl

Figure 64. Shell Script for Compiling, Model Generating, Building, and Simulating the Edge-
triggered D Flip-flop using Intermetrics' Simulator

4 6

9

2 5 7

Figure 65. Edge-Triggered D Flip-flop Labeled with Behavior Id Numbers

120

46

9

LP

Figure 66. Edge-Triggered D Flip-flop Partitioned Into 2 LPs

91121

Appendix C. Subset of VHDL Source Code for Parallel Simulation

The subset of circuits that can be simulated with VSIM includes hierarchical structural de-

scriptions of logic gates. This appendix discusses the subset and syntax for logic gates, structural

connections, the test bench, and configurations.

C.1 Logic Gates.

Logic gates are designed as entity/architecture pairs. Input and output signals for logic gates

must be of type Bit. The number of inputs and outputs is not restricted. Default values may be

assigned. Gate delays are of type time, and may be constants or generics. Processes may use wait

statements only if they wait on all inputs. Logical operators and, or, nand, nor, and xor may be

used. The adding operator (+) may be used to add values of type time. Here are some examples

of acceptable logic ga•te descriptions:

entity AND-GATE is
generic (gate-delay: TIME := 3 us);
port (IN_1,IN_2: in BIT := '0';

OUT_1: out BIT := '0');
end ANDGATE;

architecture SIMPLE of AND-GATE is

begin
OUT_1 <= I1. and I1_2 after gate-delay

end SIMPLE ;

Entity THREEINPUTAND is
Port (in-1, in_2, in_3 in BIT := '0'; out_ 1 out BIT '0');
Constant Delay : Time : ns;

end THREEINPUTAND;

Architecture BEIAV_3AND of THREEINPUTAID is

begin
process begin

122

OUT_1 <= IN_1 and IN_2 and IN_3 after delay;
wait on IN_1, IN_2, IN_3;

end process;
end BEHAV_3AND;

entity GNDBOX is
Port (GZ : Out Bit);

end GNDBOX;

architecture BEHAVIORAL of GNDBOX is

begin
GZ <= '0';

end BEHAVIORAL;

C.2 Structural Connection of Logic Gates.

Circuits are built hierarchically in entity/architecture pairs by structurally connecting logic

gate components or other structural descriptions. Assertions can be raised at this point. An

assertion of type error or fatal will abort the simulation. Component port maps use either

named or positional notation for signal assignments. Bit vectors may also be used. Here is an

example of an SR flip-flop that structurally connects two nor gates:

entity SRFF is

port (S,R: in Bit;
Q: out Bit;
QBar: out Bit);

begin
SRFFConstraint _Check:

assert not (S='1' and R='i')

report "Both S and R equal to '1"
severity Error;

end SRFF;

architecture Structural of SRFF is

component A_NOR_Gate

123

port (In-i, In_2: in Bit; Out_1: out Bit);

end component;

signal QBarIn: Bit;
signal QIn: Bit;

begin
Xl: ANORGate port map (R,QBarIn,QIn);
X2: ANORGate port map (Q_In,S,QBarIn);
Q <= QIn;
QBar <= QBarIn;

end Structural;

This carry save adder shows positional notation, use of bit vectors, and structural connections

of both gates (inverters) and full adders which are structurally defined elsewhere:

entity CSA8 is
Port (A : In Bit-VECTOR (7 downto 0) := "00000000";

B : In Bit-VECTOR (7 downto 0) :"00000000";
C : In BitVECTOR (7 downto 0) : "00000000";

HTCSABIT : In Bit '0';
LOCSABIT : In Bit : '0';

CARRY : Out Bit-VECTOR (7 downto 0) : "00000000";
HISUMBIT : Out Bit '0';
LOSUMBIT : Out Bit := '0';

SUN : Out Bit-VECTOR (7 dounto 0) := "00000000");
end CSA8;

architecture SCHEMATIC of CSA8 is

signal N-_ : Bit;

signal N-2 : Bit;

component INV_..
Port (In : In Bit : '0';

Out-l Out Bit '0');

end component;

component FULL-ADDER
Port (AIN : In Bit '0';

BIN : In Bit := 0';

CIN : In Bit 0'0;
CARRY : Out Bit := 'o0;

SUN : Out Bit : '0');

end component;

124

begin

1_9 : INV_1
Port Map (In-l=>e_2, OutI=>LOSUMBIT);

I-1O : INV-1
Port Map (Inl=>A(O), Out-l=>N_2);

I-11 : INVI

Port Map C In_1=>Nl, Outi=>HI_SUM_BIT);
I_12 : INVA

Port Map (In.l=>C(7), Out_1=>N.1);
I-1 : FULL-ADDER

Port Map (AIN=>HICSABIT, BIN=>B(7), CIN=>C(6), CARRY=>CARRY(7),
SUM=>SUM(7));

1-2 : FULL-ADDER
Port Nap (AIN>A(7), BIN=>B(6), CIN=>C(S), CARRY=>CARRY(6),

SUM=>SUM(6));
1-3 : FULL-ADDER

Port Nap (AINu>A(6), BIN=>B(S), CIN=>C(4), CARRY=>CARRY(5),
sU=>SUN(S));

I_4 : FULL-ADDER
Port Map (AI=>A(5), BIN=>B(4), CIN=>C(3), CARRY=>CARRY(4),

SUM=>SUM(4));
I_5 : FULL-ADDER

Port Map (AIN>A(4), BIN=>B(3), CIN=>C(2), CARRY=>CARRY(3),
SUM=>SUM(3));

1-6 : FULLADDER
Port Map (AI=>A(3), BIN=>B(2), CI=>C(1), CARRY=>CARRY(2),

SUM=>SUM(2));
1-7 : FULLADDER

Port Map (AI1=>A(2), BIN=>B(1), CIJ=>C(O), CARRY=>CARRY(1),
SU=>SUN(I));

1_B : FULLADDER
Port Map (AIN=>A(1), BIN=>B(O), CIN=>LOCSABIT, CARRY=>CARRY(O),

SUM=>SUM(O));
end SCHEMATIC;

C.3 Test Bench and Input Vectors.

Test benches are used to connect the circuit under test to a series of input test signals. The

inputs may be of type bit or bit-vector; however, each bit of a bit vector must be assigned values

individually. VSIM terminates after 2000 ns; therefore, no input signal should be assigned a value

beyond 2000 ns. Here is an example of a test bench for the 16-bit bit/byte shifter:

125

entity ShifterTB is
end ShifterTB;

architecture Structural of ShifterTB is

component Test-Circuit
Port (SHIFTERCOITROL : In Bit-Vector (2 downto 0);

SHIFTERINPUT In Bit-Vector (15 dounto 0);
SNIFTER-OUTPUT Out Bit-Vector (15 dowuto 0));

end component;

signal Control: BitVector(2 downto 0);
signal Input: BitVector(15 downto 0);
signal Output: BitVector(15 downto 0);

begin

Circuit: Test-Circuit port map (Control, Input, Output);

-- Use Input = 0101010101010101 after 10 no, then
-- 0000111100001111 after 250 ns,

Input(O) <= 'I' after 10 as, '1' after 250 ns;
Input(l) <= '0' after 10 ns, '1' after 250 us;
Input(2) <= 'I' after 10 us, 'I' after 250 ns;
Input(3) <= '0' after 10 ns, '1' after 250 ns;
Input(4) <= I'l after 10 us, '0' after 250 ns;
Input(S) <= '0' after 10 ns, '0' after 250 ns;
Input(6) <= '1' after 10 ns, '0' after 250 ns;
Input(7) <= '0' after 10 ns, '0' after 250 ns;
Input(8) <= '1' after 10 ns, '1' after 250 ns;
Input(9) <= '0' after 10 ns, '1' after 250 us;
Input(10) <= '1' after 10 ns, '1' after 250 ns;
Input(ll) <= '0' after 10 us, '1' after 250 ns;
Input(12) <= '1' after 10 us, '0' after 250 as;
Input(13) <= '0' after 10 ns, '0' after 250 ns;
Input(14) <= '1' after 10 ns, '0' after 250 us;
Input(15) <= '0' after 10 ns, '0' after 250 ns;

--- Check left shift, right shift,
--- left shift 8, right shift 8, pass
Control(O) <= 'I' after 20 nu, '0' after 50 us,

'I' after 100 ns, ' after 150 ns, '0' after 200 us,
'1' after 300 us, '01 after 350 un,
'1' after 400 ns, ' after 450 ns, '0' after 500 nu;

Coutrol(I) <= '0' after 20 ns, 'I' after 50 ns,
'I' after 100 ns, ' after 150 ns, '0' after 200 nu,
'0' after 300 us, 'I' after 350 us,
I1l after 400 ns, ' after 450 ns, '0' after 500 nu;

Control(2) <= '0' after 20 nu, '0' after 50 ns,
'0' after 100 us, ' after 150 as, '0' after 200 us,

126

'0' after 300 ns, '0' after 350 ns,
'0' after 400 ns, ' after 450 ns, '0' after 500 ns;

end Structural;

C.-4 Configuration Descriptions.

Configuration specifications are used to bind component instances to design entities. Con-

figurations may either be assigned all at once at the top level, or at each intermediate step in

hierarchical fashion. The latter saves a great deal of file space with respect to the intermediate C

code; this increases the chances that large circuits will compile on the hypercubes without running

out of memory.

The following is an example of a single top-level configuration for the carry lookahead adder:

use WORK. TESTCLADDER;

Configuration SCOIF_.CLA of TESTCLADDER is
for IISTANTIATECLADDER

for CLA : CARRYLOOKAHEADADDER
use Entity WORK. CARRYLOOKAHEAD.ADDER(STRUCTCLA);

for STRUCTCLA
for all : AIDNGATE

use Entity WORK.AIDGATE(SIMPLE);
end for;
for all : THREEIIPUTAND

use Entity WORK.TEREEINPUTAID(BENAV_3AND);
end for;
for all : FOURINPUT_AND

use Entity WORK.FOURIIPUTAND(BEHAV_4AID);
end for;
for all : FIVEINPUTAND

use Entity WORK.FIVEIIPUTAIND(BEHAVSAND);
end for;
for all : ORGATE

use Entity WORK.ORGATE(SIMPLE);
end for;
for all : THREEIIPUTOR

use Entity WORK. TIREEINPUTOR(BEHAV_30R));
cnd for;

127

for all : FOURIIPUTOR
use Entity WORK.FOURIIPUTOR(BEHAV_4OR);

end for;
for all : FIVEINPUTOR

use Entity WORK.FIVEINPUTOR(BEHAV_5OR);
end for;
for all : XORGATE

use Entity WORK.XORGATE(SIMPLE);

end for;
end for;

end for;
end for;

end SCONFCLA;

The wallace tree is an example of using hierarchical configurations. First, full adders are

configured with logic gates, then carry save adders are configured with full adders (and more

inverters), etc. While this method has the benefit of smaller intermediate C code, the postprocessor

output must be modified as explained on page 95 of Appendix B. Here are the wallace tree

configuration descriptions:

configuration CFGFULLADDER of Work.FUIL.ADDER is

for SCHEMATIC
for I_1, 1-2, I1VICARRY, IIV_1A, INViB, INV_.C: INV_1

use entity WORK.Inv(Simple);
end for;

for IANDBC, NANDCARRY, EANDAC, IANDSUM, NAIDAB: NAND_2
use entity WORK.IandGate(Simple);

end for;

for AND3CARRY, NAUD30R, NAND3ABC: UAND_3
use entity WORK.ThreeInput.NandGat.(Simple);

end for;
end for;

end CFGFULLADDER;

configuration CFGCSA8 of Work.CSA8 is

for SCHEMATIC
for 1-9, I-10, I_11, I-12: INV_1

use entity WORK.Inv(Siuple);
end for;

128

for I-1, I_2, I-3, 1-4, 1-5, 1-6, I-7, I-8: FULL._ADDER
use configuration WORK.CFGFUL-_ADDER;

end for;
end for;

end CFG_CSA8;

configuration CFGWALLACETREE_. of Work.WALUACETREE_1 is

for SCHEMATIC
for I-17, 1-18, I-19, I_20, I-21, 1-22, I_23: GNDBOX

use entity WORK. GndBox(Behavioral);
end for;
for I-11, I-12: FULLADDER

use configuration WORK. CFGFULLADDER;
end for;
for I-15, I-16, I-13, 1-14, I-8, I-9: INVI

use entity WORK.Inv(Simple);
end for;
for L-6, I_4, I-6, 1-2, I-3: CSA8

use configuration WORK.CFGCSA8;
end for;
for I-1: MCANDGEN

use configuration WORK. CFGMCAID_GEN;
end for;

end for;

end CFGWALLACETREEI;

configuration CFGWALLACETREE_2 of Work. WALLACETREE_2 is

for SCHEMATIC
for I-26, 127, 1-25: GNDBOX

use entity WORK.GNDBOX(Behavioral);
end for;
for I-21, 1-22: IIV_1

use entity WORK.Inv(Simple);
end for;
for I-23, 1-24, I-20, 1-9, I_1O, 1-11, 1-6, 1-12, I_13, 1-14, I-15,

1-16, I-17, I_18, I-19, 1-1, I-2, I-3, 1-4, I_6i: FULL-ADDER
use configuration WORK. CFGFULLADDER;

end for;
for 1-8: WALLACETREE_1

use configuration WORK. CFGWALLACETREE_1;
end for;

end for;

end CFGWALLACETItEE2;

configuration CGFWallaceTB of Work.WallaceTB is

129

for Structural
for Circuit: Test-Circuit

use configuration work. CFGWITACE_.TUE_2;
end for;

end for;

end CGFWallace_TB;

130

Appendix D. Design of the Wallace Tree Multiplier

The wallace tree multiplier is the largest circuit simulated with VSIM on the Intel ilypercubes.

It is created and verified in MVL-7 logic using Synopsis design tools. For AFIT VSIM simulations,

MVL-7 bits and bit vectors are changed to type bit and bit-vector.

The hierarchical design of the multiplier has two advantages. First, the corresponding inter-

mediate C code from Intermetrics' compiler is smaller than intermediate C code for an equivalent

large, flat circuit description. Second, breaking the multiplier into hierarchical components pro-

vides logical, concurrent subcomponents that may be partitioned among the nodes of a parallel

computer.

The design is taken from Hwang and Briggs (19). Figure 68 shows the multiplier as a tree

of carry save adders followed by a carry propagate adder. Two eight bit numbers, A and B, are

fed into a multiplicand generator which generates intermediate results and shifts them accordingly.

These results go through the series of carry save adders, and then the carry propagate adder where

the twelve bit product, P, is generated.

The VHDL hierarchy is shown in Figure 69. The overall circuit, wallace.tree_2, consists of

wallace-tree-l and a set of full adders that make the carry propagate adder. The wallace-tree-l

description includes the multiplicand generator and the carry save adders. In turn, the carry save

adders are made with full adders. All full adders are composed of nand gates and inverters.

The schematics for all components are as follows: wallace-tree_2 is shown in Figure 70, wal-

lace.tree.1 is shown in Figure 71, the multiplicand generator and two "subgenerators" are shown

in Figures 72 and 73, the carry save adder is shown in Figure 74, and the full adder is shown in

Figure 75.

131

A B

Shifted Multiplicand Generator

P=AxB

Figure 68. Wallace Tree Multiplier

Figure 69. Hierarchy of VHDL Sour~c Code for the Wallace Tree Multiplier

132

J4 il4)

!-

4),

U

4)

S~E
o)

EU

133)

134)

Ll

W(Y--)

Figure 72. Multiplicand Generator

135

CA"'

_ _ _ AN.

-

CAMY cm
ADO-

____ bO

IAMY cm

136

L11 L12--- - • | = ,

T -- - -- m

c -. "l -

ioO ILI

Figur 74. arrySave dder sedONWaleTreM tiir

137Y

3pU
1@

-> >

C-4)

- z z

(.4138

Appendix E. Summary of Performance Data

Each simulation configuration is summarized in Tables 9 and 10. The times reported corre-

spond to the average execution time of 30 simulations per configuration. The reported speedups

correspond to the simulation time of the slowest LP, neglecting the overhead of initializing and

closing each process. For example, if a two-LP simulation is run and LPO reports a time of 50ns

while LP1 reports a time of 53ns, the time for the simulation is considered to be 53ns. Speedups

are related to one LP simulations of otherwise identical configurations.

139

-4 M~ (0D ý Cq40W -4 C4C -4~ CDM -' -4 C4 Cq 1-4 00C -4-4W4;

Cq C4

o Iit -4 0 4 0 0 -4 Lo 00 t- m 0t- 00 - t- 0) C4 C4 m- t~- C1 ID0 1' 4~~t 0c0 m C40

> 0 m 0 0D La~ 0 rD CD m~ 00 w 00 Cq 0 0 m t- o 0CD t- m~ 0 t- 0D t-
4) co oo 00 Lf O ito l 00 00 00 = 0- Cý to 1w m~ 00 t~- "4 t- m C4 lw ?D 0w at) mN

NI0 m 4C) lq N M CD C0 4 M C-4

S0-400O0 -414- w0

8~0

W).
> D0C D 0(DCo C1 4C40 4C qC4C4N % 4C

t~o

0-4 - 0ý qv0 4C 0- qv0 4 v 00 -4 C4 w 00

ý4

C G4 C14 C4 Cla 00 00 00 00 N~ C4 C4~ N 00 00 00 00 C4 C4 C4G4 00 00 00 Go C4 Cq NI N

v)) q) 4) 4) q)) p 4) m) 4) q) v)) 4) 4h) v) v) v) v) q)v)v)v)

16 04 13 11 A4A 4A4>44 a4 44 A4 a 444 a40 >94 11>4 OW >46 P69 4 a44 0-4 C 4

140

It. -Cý l l Ci -i M. 0 m-. 0- 0 0q - ml ý~-- -

m m o -4 0 4 -0i i C -C
4

4

LO V~ m N v vf 4 w00 v mO 00 0 m00 t- Lo 0 t - m~

~~0 mf "f 00 LO t- 00 IC 0 DC1t

<D0 -4 00 t-- m 00 w -4 -4 M~ -4 0 C4 10 10 M0 CD 0 o CDi~
t-C wmL -00m00 0~0mm 010000 w

>. 0 -4 m~ 0 Lt 00 1-4 0 t-. h -4 0D 0D 0 0 "~ -4 N -4 t- t~- mo
t~ - 0 0 00 t.- 0 G'q t- 00 00 0 " m~ LO~ 0 -4 0o4 t- UIf qw

w-t C4 00 C'I N - =OI -U,:'0 V
Lo -4 to oo -4 -4 1-4 -4

6a000

0

C4 Cq m C0400 =0o0t- LO0000 "t
t00 m 4m jt-

00

0n

-4 - qv o- 414- 4qt 0- 4v0 4 v0

04-4C40W00 4'V00 4C4qr00 44V0 -C4' 0000 :P0

00 00 00 00 N' C4 C4 00 00 00 00 C4 04 C 4 0 00 00 00 C4 C4 C4

064 164 00 W 164 064 >46ý.- * - -
U)4)4)4)W.W*W,4~ ~

IVV10V101

'to If '10 '00 ev 'o417

Appendix F. New Postprocessor Steps

The postprocessor modifies the intermediate C code using the 10 steps Comeau described in

his thesis (10), as well as two new steps. The first new step is to delete the following unnecessary

function calls:

"* closesigdictO)

"* m.inttype()

"* mrereal.type()

"* mrereal-type ()

"* m..signal()

"* pop()

"* pusho)

"* read-inputo)

* rmtrrec()

* rptstats()

* rpterr()

"* StartNonarrayComp ()

"* schedo)

"* timer()

"* tpop()

The second new step is to modify every behavior instance's "function behavior" to report it's

entity/architecture name if MAPPING is defined in VSIM and the boolean variable mapping is true.

Each of these function declarations is of the form Zxxxxxxx-xxx(bi). Inside the function, after

local declarations, the following is added:

#ifdef NAPPING
if (mapping)

printf (",n", Zxxxxxxxxxxxx.trcbck);
#endif

142

Here is an example of a behavior instance function declaration prior to adding the new code:

static void
ZOOOOO2T_4440 (bi)
BDP bi;

ZOOOOO2T-4112_struct *cd =
(ZOOOOO2T_4112_struct *)bi->data;

And here is the modified behavior instance function:

static void
ZOOOOO2T_4440 (bi)
BHP bi;

Z000002T_4112_struct *cd =
(ZOOOOO2T_4112_struct *)bi->data;

#ifdef MAPPING
if (mapping)

printf("%s\na, Z000002T_4440_trcbck);
#endif

143

Appendix G. Key Source Code

This Appendix describes some of the key source code necessary to implement parallel VHDL

simulations with SPECTRUM. The code presented concerns interfacing VSIM and SPECTRUM.

It is important to recognize that an event is logically equivalent to a signal change that is passed

from one LP to another. A complete code listing is presented in a second volume.

G.1 vspec-inito.

This routine builds a table of function pointers for SPECTRUM. Each function pointer rep-

resents the starting code for the simulation on each LP. For VSIM, all LPs start with the routine

startupo. Therefore, every entry in junctions[] is loaded with the address of startupo. Also, a

call to read-mapping() is made so VSIM can determine which LPs are assigned which behaviors.

Finally, a call is made to SPECTRUM's lpilevel-inito, where SPECTRUM initializes and each LP

calls startupo. Here is the code for vspec-initO, which is found in the file vspec.c:

void vspec.init()

void (*functions [NUNPROCS) ();
char *args [IUKPROCS];
char *argument;
int i;

/* initialize function pointers and lp #s as arguments */
for (i = 0; i < NuKPROCS; i++) {

functions[i] = startup;
argument = (char *)malloc(6*sizeof(char));
sprintf (argument, '•d", i);
args [i] = argument;

}

read-mapping(; /* read in lpx.map file */

lp-level.init(functions, args);
}

144

G.2 startupO.

This routine, also found in vspec.c, is called by SPECTRUM after initialization. SPECTRUM

passes each LP its LP number through slartupO, and startupO calls lp.init0 so SPECTRUM can

initialize the VSIM filters. Finally, vhdLmain0 is called in the intermediate C code so the circuit

may be constructed. The source code for startupO is as follows:

void startup(lp.no)

char *lp.no;

sscanf(lp.no, "W'.d, fty.lp); /* set global my.lp */
free(lp.no);
lp.init(my.ip); /* set up filter tables */

vhdl-maino;
}

G.3 send-signal().

This routine, also in the file vspec.c, is used to build an event out of a signal record, and call

SPECTRUM's lp-posLeventO, as follows:

void sendusignal(this.signal-rec, dest)

SIGREC *this-signal-rec;
int dest;

{

struct event *nev-event;

neowevent = (struct event *)malloc(sizeof(struct event));
newevent -> from.lp = my-1p;
new-event -> to-lp = dest;
new-event -> time = *sihEtime;
new-event -> event = SIGIALCHANGE;
neowevent -> id = this.signal.rec -> sr.ptr -> id;

145

new-event -> value - this-signal-rec -> value;
new-event -> next = NULL;

lp.post.event (new-event);
free(new.event);

G.4 receive-signal(.

This function passes received events from other LPs (via SPECTRUM) to VSIM. First, a call

to SPECTRUM is made in lp-get-eventO. This also activates the receive filter, shown later. If the

filter passes receive.signal0 a null pointer, then it returns to VSIM without posting a signal record

into the local active list. Otherwise, the newly received event is converted into a signal record and

posted directly into the active list. This function, shown below, is found in the file vspec.c.

void receive.signal()

struct event *event;
SIG-REC *new.sig.rec;
SRP signal;
int value;
int time;

event = lp.get.evento;

if (event =NULL) (
signal = srrec.ptr[event -> id];
value = event -> value;
time = event -> time;
MAKESIGREC(signal, value, time);

insert.sig.rec(new.sig.rec);
free(event);

}

146

G.5 nullpost-fltrO.

This is the filter used when VSIM sends an event to another LP. The filter is logically equiv-

alent to AFIT's chanclocks post filter. For VSIM, the filter tracks the times a message was sent on

each output arc. Also, when an event is sent to one LP, this filter sends a null message to all other

output arcs. The post filter, found in the file vfilt, c, is follows:

void null-post.fltro)

int i;

/* update output channel time for this message */
if (event.to.post -> event != NULL-MSG kk NUNOUTLPS > 0) {

for (i = 0; i < IUMOUTARCS; i++) {
if (OUTARCS(i) == event.to.post -> to.lp)

output.ctime[i] = event.to.post -> time;
}

}

/* send nulls to other ips *1
if (event.to.post->tolp != my-lpid) {

for (i = 0; i < NULOUTARCS; i++){
if (OUTARCS(i) != event.to.post -> to.ip)

sendnull(OUTARCS(i), event.to.post -> time);
}

}

G. 6 able-to.proceed().

This routine, found in the file vfilt.c, determines (1) at least one message has been received

from every upstream LP, and (2) the next event in SPECTRUM's input queue is less than the safe

time, as follows:

BOOL able.to.proceedO

147

if (event-list == NULL)
return FALSE;

/* if haven't yet received a message from everybody */
if (safetime() == -1)

return FALSE;

/* if still may get an earlier message */
if (event-list -> time > safetimeC))

return FALSE;

return TRUE;
}

G. 7 safelime(.

This routine determines the minimum input channel time for all input arcs. It is found in

vfilt. c, and lists as follows:

int safetime()

Ant min.input.ctime = input-ctime[O];

Ant i;

for (i = 1; i < NUNL.II.ALRCS; i++) {
if (input.ctime[i] < min.input.ctime)

minminput.ctime = input-ctime [i];

return (min.input.ctime);

G.8 sendanullsO.

This function is used to send null messages to all downstream LPs prior to blocking for

incoming messages (explained below in nullgeLfltrO). The time stamp of the null messages is the

148

minimum of (1) the iow time" of the active list in VSIM, anc (2) the safe time plus the output

delay for the local LP. The code, found in vfiltc, is as follows:

void send.nulls()

int i;
int safe-time = safetimeo;
int vhdl-low-time = get-low-timeo);

for (i = 0; i < NUMOUTARCS; i++)
if (OUTARCS(i) != my.lpid)

if (vhdl-low.time < safe-time + LPOUTDELAYS(i))
send-null(OUTARCS(i), vhdl_low_time);

else
send-null(OUTARCS(i), safetime + LPOUTDELAYS(i));

G.9 null-getflirtO.

This is the filter used when receiving events from upstream LPs. First, if there are no upstream

LPs, the function simply returns and VSIM continues. Otherwise, the filter gets a message (if

able-to-proceedo), and returns it to VSIM if it is not a null message. The event is passed to VSIM

by removing it from SPECTRUM's input queue and assigning it to SPECTRUM's global variable

called current-event. If an event is not ready (not able tJoproceedO), then the filter determines if

VSIM can continue without an event, i.e., if VSIM's low time is less than or equal to the safe time.

The code, found in vfilt.c, is as follows:

void null.get.fltr()

int vhdl_lov_time = getlowtimeo;
BOOL found = FALSE;
EVENT *temp;

if (NUNMILPS == 0)

149

return;

while (!found) {
if (ableto-proceedo) {

if (event-list->event 1= IULL-MSG)
found = TRUE;

else {
temp = event-list;
event-list = event-list->next;
node-trash-event(temp);

}
}

else {
if (vhdl-low-time <= safetimeo))

return;
else {

send-nullsC);
while (!able-to-proceed())
node.block-til-message();

}
}

current-event = event-list;
event-list = event-list->next;

150

Bibliography

1. Ball, Duane and Susan Hoyt. "The Adaptive Time-Warp Concurrency Control Algorithm."
SCS Multiconference on Distributed Simulation. 174-177. January 1990.

2. Banks, Jerry and John S. Carlson, II. Discrete-Event System Simulation. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

3. Bergman, Kenneth C. Dynamic Spatial Partitioning of a Battlefield Parallel Discrete-Event
Simulation. MS thesis, AFIT/GCS/ENG, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1992.

4. Breeden, Thomas A., "AFIT Parallel VHDL Simulator User's Guide," 1992. User's Guide.

5. Chamberlain, Roger D. and Mark A. Franklin. "Hierarchical Discrete-Event Simulation on
Hypercube Architectures," IEEE Micro, 10-20 (August 1990).

6. Chandy, K.M. and J. Misra. "Distributed Simulation: A Case Study in Design and Verifica-
tion of Distributed Programs," IEEE Transactions of Software Engineering, SE-5(5):440-452
(September 1979).

7. Chandy, K.M. and J. Misra. "Asynchronous Distributed Simulation via a Sequence of Parallel
Computations," Communications of the ACM, 24(11):198-206 (April 1981).

8. Chandy, K.M. and J. Misra. "Distributed Deadlock Detection," ACM Transactions on Com-
puter Systems, 1(2):144-156 (May 1983).

9. Christensen, E., April 1992. AFIT Parallel Simulation Lecture.

10. Comeau, Ronald C. Parallel Implementation of VHDL Simulations on the Intel iPSC/2 Hy-
percube. MS thesis, AFIT/GCS/ENG/91D-03, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991.

11. Daniel, David W. Development of a Hardware Acceleration Engine. MS thesis,
AFIT/GCS/ENG, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1992.

12. DeGroat, Joe, et al. "AFIT VHDL Environment." Proceedings-1988 Frontiers in Education
Conference. 324-329. 1988.

13. Dewey, Allen and Anthony Gadient. "VHDL Motivation," IEEE Design and Test, 12-16
(April 1986).

14. Fujimoto, Richard M. "Performance Measurements of Distributed Simulation Strategies."
Distributed Simulation 1988. 14-20. 1988.

15. Fujimoto, Richard M. "Parallel Discrete Event Simulation." Proceedings of the 1989 Winter
Simulation Conference. 1-34. 1989.

16. Hartrum, Thoma3 C., "AFIT Guide to SPECTRUM," 1992. User's Guide.

17. Hennessy, John L. and David A. Patterson. Computer Architecture: a Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

18. Hodges, Billy R., et al. "A Distributed Kernal for VHDL Simulation." Proceedings of the IEEE
1990 National Aerospace and Electronics Conference. 215-220. 1990.

19. Hwang, Kai and Faye A. Briggs. Computer Architecture and Parallel Processing. McGraw-
Hill, 1984.

151

20. The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York,
NY 10017. IEEE Standard VHDL Language Reference Manual, 1988.

21. Lewis, Ted G. and Hesham EI-Rewini. Introduction to Parallel Computing. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc, 1992.

22. Lipsett, Roger, et al. VHDL: Hardware Description and Design. Norwell MA: Kluwar Aca-
demic Publishers, 1990.

23. Mason, Tony and Doug Brown. lex & yacc. Sebastopol. CA 95472: O'Reilly & Associates,
Inc., 1984.

24. McNear, Andrew E. Improved Task Scheduling for Parallel Simulations. MS thesis,
AFIT/GCS/ENG/91D-14, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

25. Misra, Jayadev. "Distributed Discrete-Event Simulation," ACM Computing Surveys,
18(1):39-65 (March 1986).

26. Neelamkavil, Francis. Computer Simulation and Modelling. Dublin, Ireland: John Wiley &
Sons, 1987.

27. Pritsker, Alan B. Introduction to Simulation and SLAM I1. West Lafayette, Indiana: Systems
Publishing Corporation, 1986.

28. Proicou, Michael Chris. A Distributed Kernel for Simulation of the VHSIC Hardware De-
scription Language. MS thesis, AFIT/GCS/ENG/89D-14, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.

29. Quinn, Michael J. Designing Efficient Algorithms for Parallel Computers. Mc Graw-Hill, Inc.,
1984.

30. Reynolds, Jr., Paul F. "A Spectrum of Options for Parallel Simulation." Proceedings of the
ACM Winter Simulation Conference. 1988.

31. Reynolds, Jr., Paul F. "Comparative Analyses of Parallel Simulation Protocols." Proceedings
of the 1989 Winter Simulation Conference. 671-679. 1989.

32. Reynolds, Jr., Paul F. and P.M. Dickens. "SPECTRUM: A Parallel Simulation Testbed."
Proceedings of the 4th Annual Hypercube Conference. 1989.

33. Van Horn, Prescott J. Development of a Protocol User's Guideline for Conservative Parallel
Simulations. MS thesis, AFITIGCS/ENG/92D-19, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1992.

34. Zhang, Guoqing. "Partitioning and Transformation of VHDL Models for Distributed Simula-
tion." 6th Workshop on Parallel and Distributed Simulation (PADS92). 203-205. 1992.

152

Vita

Captain Thomas Andrew Breeden was born on October 14, 1961, in Punta Gorda, Florida.

He graduated from J.M. Tate High School in Pensacola, Florida, in 1979 and enlisted in the Air

Force in 1981. In 1988, he received a B.S. Electrical Engineering degree, with high honors, from the

University of Florida. He was commissioned a Second Lieutenant on September 29, 1988. Captain

Breeden was assigned to the 6555th Aerospace Test Group, Cape Canaveral Air Force Station, as

a launch network controller before his entry into AFIT in May 1991.

Permanent address: 8567 Chemstrand Rd.
Pensacola FL 32514

153

R DForm ApprovedREPORT DOCUMENTATION PAGE OMB No 0704 -0188
iPublic reocirtirc our•fen tor this collection of information is estimated to average 1 hour oer response. including the time for reviewing instructions, searc ing existing caaa sources.
gatherig anr maint~Mhing the data needeod and completing and revievvina -re collectiOn of information Send comments reoaraing this burden estimate or any other aspect of this
collection of information. including suggestions tot reducing this ourcen to Washinqlton Heaoquarters Services. Directorate for information operations and Redorts. 1215 Jeteorion
Davis Hiohwav. Suite 1204. Arlington. V? 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED
December 1992 Master's Thesis

14. TITLE AND SUBTITLE S. FUNDING NUMBERS

PARALLEL SIMULATION OF
SSTRUCTURAL VHDL CIRCUITS ON

INTEL HYPERCUBES
6. AUTHOR(S)

"Thomas A. Breeden, Captain, USAF

B

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/92D-01

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING

DARPA AGENCY REPORT NUMBER

3701 North Fairfax Drive
Arlington, VA 22203
(703) 696-2298

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Many VLSI circuit designs are too large to be simulated with VHDL in a reasonable amount of time. One
approach to reducing the simulation time is to distribute the simulation over several processors. This research
creates an environment for designing and simulating structural VHDL circuits on the Intel iPSC/2 and iPSC/860
Hypercubes. Logic gates and system behaviors are partitioned among the processors, and signal changes are
shared via event messagts. Circuit simulations are run over the SPECTRUM parallel simulation testbed, and
the null-message paradigm is used to avoid deadlock. Structural circuits ranging from forty to over one thousand
logic gates are correctly simulated. Although no attempt is made to find optimal partitioning strategies, speedups
are obtained for some configurations.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Parallel Simulation, VHDL, Circuit Simulation, Intel Hypercube 167
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSi Std Z39-'8
299-102

